Skip to main content
Log in

Protein folding in vivo and renaturation of recombinant proteins from inclusion bodies

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Eukaryotic proteins expressed inEscherichia coli often accumulate within the cell as insoluble protein aggregates or inclusion bodies. The recovery of structure and activity from inclusion bodies is a complex process, there are no general rules for efficient renaturation. Research into understanding how proteins fold in vivo is giving rise to potentially new refolding methods, for example, using molecular chaperones. In this article we review what is understood about the main three classes of chaperone: the Stress 60, Stress 70, and Stress 90 proteins. We also give an overview of current process strategies for renaturing inclusion bodies, and report the use of novel developments that have enhanced refolding yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marston, F. A. O. (1986) The purification of eukaryotic polypeptides synthesized inEscherichia coli.Biochem. J. 240, 1–12.

    PubMed  CAS  Google Scholar 

  2. Kane, J. F. and Hartley, D. L. (1988) Formation of recombinant protein inclusion bodies inEscherichia coli.Trends Biotech. 6, 95–101.

    Article  CAS  Google Scholar 

  3. Georgiou, G. and Bowden, G. (1991) Inclusion body formation and the recovery of aggregated recombinant protein, inin Recombinant DNA Technology and Applications (Prokop, A., Bajpai, R. K., and Ho, C. S., eds.), McGraw-Hill,USA, pp. 333–356.

    Google Scholar 

  4. Freedman, R. B. (1992) Protein folding in the cell, inProtein Folding (Creighton, T. E., ed), W. H. Freeman and Co, New York, pp. 455–540.

    Google Scholar 

  5. Schein, C. H. (1989) Production of soluble recombinant proteins in bacteria.Bio/Technol. 7, 1141–1148.

    CAS  Google Scholar 

  6. Thatcher, D. R. and Hitchcock, A. (1994) Protein folding in biotechnology, inMechanisms of Protein Folding (Pain, R. H., ed.), IRL, Oxford University Press, Oxford, UK, pp. 229–261.

    Google Scholar 

  7. Hlodan, R., Craig, S., and Pain, R. H. (1991) Protein folding and its implications for the production of recombinant proteins.Biotechnol. Genet. Eng. Rev. 9, 47–88.

    PubMed  CAS  Google Scholar 

  8. Privalov, P. L. (1992) Physical basis of the stability of the folded conformations of proteins, inProtein Folding (Creighton, T. E., ed), W. H. Freeman, NY, pp. 83–126.

    Google Scholar 

  9. Gilbert, H. F. (1994) The formation of native disulphide bonds, inMechanisms of Protein Folding (Pain, R. H., ed.), IRL/Oxford University Press, Oxford, UK, pp. 104–136.

    Google Scholar 

  10. Gething M. J., McCammon, K., and Sambrook, J. (1989) Protein folding and intracellular transport evaluation of conformational changes in nascent exocytotic proteins.Meth. Cell. Biol. 32, 185–206.

    Article  CAS  Google Scholar 

  11. Bochkareva, E. S., Lissin, N. M., and Girshovich, A. S. (1988) Transient association of newly synthesized unfolded proteins with the heat-shock GroEL protein.Nature 336, 254–257.

    Article  PubMed  CAS  Google Scholar 

  12. Mitraki, A., Haase-Pettingell, C., and King, J. (1991) Mechanisms of inclusion body formation, inProtein Refolding (De Bernardez-Clark, E. and Georgiou, G., eds.), ACS. Symposium Series, vol. 470: American Chemical Society, Washington, DC, pp. 35–49.

    Google Scholar 

  13. Haase-Pettingell, C. and King, J. (1988) Formation of aggregates from a thermolabile in vivo folding intermediate in P22 tailspike maturation: A model for inclusion body formation.J. Biol. Chem. 263, 4977–4983.

    PubMed  CAS  Google Scholar 

  14. Sturtevant, J. M., Yu, M.-H., Haase-Pettingell, C., and King, J. (1989) Thermostability of temperature-sensitive folding mutants of the p22 tailspike protein.J. Biol. Chem. 264, 10,693–10,698.

    CAS  Google Scholar 

  15. Jaenicke, R. (1987) Folding and association of proteins.Prog. Biophys. Mol. Biol. 49, 117–237.

    Article  PubMed  CAS  Google Scholar 

  16. Jaenicke, R. and Rudolph, R. (1986) Refolding and association of oligomeric proteins.Methods Enzymol. 131, 218–250.

    PubMed  CAS  Google Scholar 

  17. Seckler, R. and Jaenicke, R. (1992) Protein folding and protein refolding.FASEB J. 6, 2545–2552.

    PubMed  CAS  Google Scholar 

  18. Ellis, R. J. (1990) Molecular Chaperones: The plant connection.Science 250, 954–959.

    Article  PubMed  CAS  Google Scholar 

  19. Ellis, R. J. (1990) The molecular chaperone concept.Semin. Cell Biol. 1, 72.

    Google Scholar 

  20. Hendrick, J. P. and Hartl, F.-U. (1993) Molecular Chaperone functions of heat shock proteinsAnnu. Rev. Biochem. 62, 349–384.

    Article  PubMed  CAS  Google Scholar 

  21. Linquist, S. and Craig, E. (1988) The heat shock proteins.Annu. Rev. Genet. 22, 631–637.

    Article  Google Scholar 

  22. Fayet, O., Ziegelhoffer, T., and Georgopoulos, C. (1989) The GroES and GroEL shock gene products ofE. coli are essential for bacterial growth at all temperatures.Can. J. Bact. 171, 1379–1385.

    CAS  Google Scholar 

  23. Beckman, R., Mizzen, L., and Welch, W. (1990) Interaction of Hsp 70 with newly synthesized proteins: implications for proteins folding and assembly.Science 248, 850–854.

    Article  Google Scholar 

  24. Chirico, W., Waters, M., and Blobel, G. (1988) 70K Heat shock related proteins stimulate translocation into microsomes.Nature 332, 805–809.

    Article  PubMed  CAS  Google Scholar 

  25. Murakami, H., Pain, D., and Blobel, G. (1988) 70 KD heat shock protein is one of at least two factors stimulating protein import into mitochondria.J. Biol. Chem. 107, 2051–2057.

    CAS  Google Scholar 

  26. Pelham, H. (1986) Speculations on the functions of the major heat-shock and glucose related functions.Cell 46, 959–961.

    Article  PubMed  CAS  Google Scholar 

  27. Skowyra, D., Georgopoulos, C., and Zylic, M. (1990) TheE. coli DnaK gene product, the hsp 70 homolog, can reactivate the heat inactivated RNA. polymerase in an ATP dependent manner.Cell 62, 939–944.

    Article  PubMed  CAS  Google Scholar 

  28. Ellis, R. J. and van der Vies, S. M. (1991) Molecular chaperones.Annu. Rev. Biochem. 60, 321–347.

    Article  PubMed  CAS  Google Scholar 

  29. Freedman, R. B. (1991) Protein-disulphide isomerase, inConformation and Forces in Protein Folding (Nall, B. T. and Dill, K. A., eds.), AAAS, Washington, DC, pp. 204–214.

    Google Scholar 

  30. Goldenberg, D. P. (1992) Mutational analysis of protein folding and stability, inProtein Folding (Creighton, T. C., ed), W. H. Freeman and Co, New York, pp. 353–403.

    Google Scholar 

  31. Wickner, S., Hoskins, J., and McKenny, K. (1991) Function of DnaJ, and DnaK as chaperones in the origin specific DNA. binding by RePA.Nature 350, 165–167.

    Article  PubMed  CAS  Google Scholar 

  32. Ellis, R. and Hemmingsen, S. (1989) Molecular Chaperones: proteins essential for the biogenesis of some macromolecular structures.Trends Biochem. Sci. 14, 339–342.

    Article  PubMed  CAS  Google Scholar 

  33. Georgopolous, C. and Ang, D. (1990) TheE. coli GroE chaperonins.Semin. Cell. Biol. 1, 19–25.

    Google Scholar 

  34. Hendrix, R. (1979) Purification and properties of GroE, a host protein involved in bacteriophage assembly.J. Mol. Biol. 129, 375–392.

    Article  PubMed  CAS  Google Scholar 

  35. McMullin, T. and Hallberg, R. (1988) Molecular. A highly evolutionary conserved mitochondrial protein is structurally related to the protein encoded byE. coli GroEL gene.Cell. Biol. 8, 317–380.

    Google Scholar 

  36. Chandrasekhar, G., Tilly, K., Woolford, C., Hendrix, R., and Georgopolous, C. (1986) Purification and properties of the GroES morphenogenic protein ofE. coli.J. Biol. Chem. 261, 12,414–12,419.

    CAS  Google Scholar 

  37. Jaenicke, R. (1993) Role of accessory proteins in protein folding.Curr. Opin. Struct. Biol. 3, 104–112.

    Article  CAS  Google Scholar 

  38. Miller, A., Maghlaoui, K., Albanese, G., Kleinjan, G., and Smith, C. (1993)E. coli chaperonins Cpn 60 and Cpn 10 do not catalyse the refolding of mitochondrial malate dehydrogenase.Biochem. J. 291, 139–144.

    PubMed  CAS  Google Scholar 

  39. Buchner, J., Schmidt, M., Fuchs, M., Jaenicke, R., Rudolph, R., Schmid, F. X., and Keifhaber, T., (1991) GroE. facilities refolding of citrate synthase by suppressing aggregation.Biochemistry 30, 1586–1591.

    Article  PubMed  CAS  Google Scholar 

  40. Martin, J. Langer, T., Boteva, R., Schramel, A., and Horwich, A. (1991) Chaperonin mediated protein folding at the surface of GroEL through a molten globule like intermediate.Nature 352, 36–42.

    Article  PubMed  CAS  Google Scholar 

  41. Staniforth, R. A., Burston, S. G., Atkinson, T., and Clarke, A. R. (1994) Affinity of chaperonin 60 for a protein substrate and its modulation by nucleotides and chaperonin 10.Biochem. J. 300, 651–658.

    PubMed  CAS  Google Scholar 

  42. Mizobata, T., Akiyama, Y., Ito, K., Yumoto, M. and Kawata, Y. (1992) Effects of the chaperonin GroE on the refolding of trytophanase fromE. coli. Refolding is enhanced in the prescence of ADP.J. Biol. Chem. 267, 17,773–17,779.

    CAS  Google Scholar 

  43. Wiech, C., Buchner, J. Zimmermann, R. Jacob, U. (1992) Hsp 90 chaperones: protein folding in vitro.Nature 358, 169,170.

    Article  Google Scholar 

  44. London, J., Skrzynia, C., and Goldberg, M. E. (1974) Renaturation ofEscherichia coli tryptophanase after exposure to 8M urea.Eur. J. Biochem. 47, 409–415.

    Article  PubMed  CAS  Google Scholar 

  45. Goldberg, M. E., Rudloph, R., and Jaenicke, R. (1991) A kinetic study of the competition between renaturation and aggregation during the refolding of denatured-reduced egg white lysozyme.Biochem. 30, 2790–2797.

    Article  CAS  Google Scholar 

  46. Thatcher, D. R., Wilks, P., and Chaudhuri, J. B. (1996) Inclusion bodies and refolding, inProteins Labfax (Price, N., ed.), BIOS Scientific, Oxford, pp. 119–130.

    Google Scholar 

  47. Babbitt, P. C., West, B. L., Buechter, D. D., Kuntz, I. D., and Kenyon, G. L. (1990) Removal of a proteolytic activity associated with aggregates formed from expression of creatine kinase inEscherichia coli leads to improved recovery of active enzyme.Bio/Technol. 8, 945–949.

    Article  CAS  Google Scholar 

  48. Rudolph, R. (1990) Renaturation of recombinant, disulphide-bonded proteins from “inclusion bodies”, inModern Methods in Protein- and Nucleic Acid Research (Tschesche, H., ed.), Walter de Gruyter, Berlin, pp. 149–171.

    Google Scholar 

  49. Forman, S. M., De Bernardez, E. R., Feldberg, R. S., and Swartz, R. W. (1990) Cross-flow filtration for the separation of inclusion bodies from soluble proteins inEscherichia coli cell lysates.J. Membr. Sci. 48, 263–279.

    Article  CAS  Google Scholar 

  50. Chaudhuri, J. B. (1994) Refolding recombinant proteins: process strategies and novel approaches.Ann. NY Acad. Sci. 721, 374–385.

    Article  PubMed  CAS  Google Scholar 

  51. Vicik, S. and De Bernardez-Clark, E. (1991) An engineering approach to achieving high-protein refolding yields, inACS Symposium Series, vol. 470:Protein Refolding (De Bernardez-Clark, E. and Georgiou, G., eds.), American Chemical Society, Washington, DC, pp. 180–196.

    Google Scholar 

  52. Builder, S. E., and Ogez, J. R. (1984) Purification and activity assurance of precipitated heterologous proteins. US Patent 4620948.

  53. Fischer, B., Sumner, I., and Goodenough, P. (1993) Renaturation of lysozyme-temperature dependence of renaturation rate, renaturation yield and aggregation: identification of hydrophobic folding intermediates.Arch. Biochem. Biophys. 306, 183–187.

    Article  PubMed  CAS  Google Scholar 

  54. Jaenicke, R. and Rudolph, R. (1989) Folding proteins, inProtein Structure—AA Practical Approach (Creighton, T. E. ed.), IRL/Oxford, UK, pp. 191–223.

    Google Scholar 

  55. Mendoza, J. A., Rogers, E., Lorimer, G. H., and Horowitz, P. M. (1991) Unassisted refolding of urea unfolded rhodanese.J. Biol. Chem. 266, 13,587–13,591.

    CAS  Google Scholar 

  56. Gatenby, A. A., Viitanen, P. V., and Lorimer, G. H. (1990) Chaperonin assisted polypeptide folding and assembly: implications for the production of functional proteins in bacteria.TIBTECH. 8, 345–358.

    Google Scholar 

  57. Viitanen, P. V., Lubben, T. H., Reed, J., Goloubinoff, P., O'Keefe, D. P., and Lorimer, G. H. (1990) Chaperonin-facilitated refolding of ribulosebisphosphate carboxylase and ATP hydrolysis by chaperonin 60 (groEL) are K+ dependent.Biochemistry 29, 5665–5671.

    Article  PubMed  CAS  Google Scholar 

  58. Buchner, J. and Rudolph, R. (1991) Renaturation, purification and characterization of recombinant fabfragments produced inEscherichia coli.Bio/Technology 9, 157–162.

    Article  PubMed  CAS  Google Scholar 

  59. Seckler, R., Fuchs, A., King, J., and Jaenicke, R. (1989) Reconstitution of the thermostable trimeric phage-P22 tailspike protein from denatured chains in vitro.J. Biol. Chem. 246, 11,750–11,753.

    Google Scholar 

  60. Tsou, C.-L. (1986) Location of the active sites of some enzymes in limited and flexible molecular regions.Trends Biochem. Sci. 11, 427–429.

    Article  CAS  Google Scholar 

  61. Tsou, C.-L. (1993) Conformational flexibility of enzyme active sites.Science 262, 380,381.

    Article  Google Scholar 

  62. Cleland, J. L (1993) Impact of protein folding on biotechnology, inACS Symposium Series, vol. 526:Protein Folding (Cleland, J. L., ed.), American Chemical Society, Washington, DC, pp. 1–21.

    Google Scholar 

  63. Rudolph, R, Opitz, U, Hesse, F, Riebland, R., and Fischer, S. (1992) Reactivation of microbially produced human tissue-type plasminogen activator.Biotechnol. Int. 321–325.

  64. Cleland, J. L. and Wang, D. I. C. (1990) Cosolvent assisted protein refolding.Bio/Technol. 8, 1274–1278.

    Article  CAS  Google Scholar 

  65. Cleland, J. L., Builder, S. E., Swartz, J. R., Winkler, M., Chang, J. Y., and Wang, D. I. C. (1992) Polyethylene glycol enhanced protein refolding.Bio/Technol. 10, 1013–1019.

    Article  CAS  Google Scholar 

  66. Carlson, J. D. and Yarmush, M. L. (1992) Antibody assisted protein refolding.Bio/Technol. 10, 86–91.

    Article  CAS  Google Scholar 

  67. Buchner, J., Brinkmann, U., and Pastan, I. (1992) Renaturation of a single-chain immunotoxin facilitated by chaperones and protein disulphide isomerase.Bio/Technol. 10, 682–685.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian B. Chaudhuri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guise, A.D., West, S.M. & Chaudhuri, J.B. Protein folding in vivo and renaturation of recombinant proteins from inclusion bodies. Mol Biotechnol 6, 53–64 (1996). https://doi.org/10.1007/BF02762323

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02762323

Index Entries

Navigation