Advertisement

Journal of Forest Research

, Volume 4, Issue 2, pp 93–98 | Cite as

Prediction of near-view scenic beauty in artificial stands of hinoki (Chamaecyparis obtusa S. et Z.)

  • Weiming Liao
  • Keiitirou Nogami
Original Articles

Abstract

The Analytic Hierarchy Process was used to identify the evaluation criteria of near-view scenic beauty in artificial hinoki (Chamaecyparis obtusa S. et Z.) forests. A multiple-regression model and a neural-network model were developed to predict near-view scenic beauty with the physical features of forests in this paper. With the multiple-regression model as the benchmark, the neural-network model using genetic algorithms performed better in scenic beauty prediction with respect to the predictive capability and the predictive residuals.

Key words

Analytic Hierarchy Process (AHP) artificial hinoki forests Hayashi’s Quantification Theory Type I near-view scenic beauty Neural Network (NN) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Arthur, L. M. (1977) Predicting scenic beauty of forest environments: some empirical tests. For. Sci. 23: 151–160.Google Scholar
  2. BioComp System. Inc. (1995) NeuroGenetic Optimizer user manual (ver 2.0.0). 135 pp, BioComp System Inc., Redmond.Google Scholar
  3. Brown, T. C., Jr. (1983) Near-view scenic beauty of Ponderosa Pine forests. A dissertation submitted to doctor of Philosoph in the graduate college, University of Arizona. 237pp.Google Scholar
  4. Buhyoff, G. J. and Leuschner, W. A. (1978) Estimating psychological disutility from damaged forest stands. For. Sci. 24: 424–432.Google Scholar
  5. Buhyoff, G. J., Wellman, J. D., and Daniel, T. C. (1982) Predicting scenic beauty for Mountain Pine Beetle and Western Spruce Budworm damaged forest vistas. For. Sci. 28: 827–838.Google Scholar
  6. Daniel, T. C. and Boster, R. S. (1976a) Measuring landscape model: the scenic beauty method. USDA Forest Serv. Res. Pap., RM-167, 66 pp, Rocky Mt. Forest and Range Exp. Stn., Fort Collins, Colo.Google Scholar
  7. Daniel, T. C. and Boster, R. S. (1976b) Measuring landscape aesthetics: the scenic beauty method. USDA Forest Serv. Res. Pap., RM-167, 66pp, Rocky Mt. Forest and Range Exp. Stn., Fort Collons, Colo.Google Scholar
  8. Fight, R. D. and Randall, R. M. (1980) Visual quality and the cost of growing timber. J. For. 78: 546–548.Google Scholar
  9. Goldberg, G. E. (1989) Genetic algorithms in search, optimization and machine learning. 412pp, Addison-Wesley Publishing Company Inc., New York.Google Scholar
  10. Green, D. M. and Swetts, J. A. (1966) Signal detection theory and psychophysics. 455 pp, John Wiley, New York.Google Scholar
  11. Mori, N. (1993) Designing with the left brain. 194 pp, Kaibundo, Tokyo.Google Scholar
  12. Okuno, C. (1978) Handbook of Applied Statistics. 827pp, Yukendo, Tokyo. (in Japanese)Google Scholar
  13. Reynolds, I. K. (1978) The relationship of land values to site characteristics-some implications for scenic quality assessment. J. Environ. Manage. 6: 99–106.Google Scholar
  14. Rumelhart, D. E., McClelland, J. L., and the PDP Research Group (1995) Parallel distributed processing. 611 pp, The MIT Press Cambridge, Massachusetts, London.Google Scholar
  15. Saaty, T.L. (1980) The analytic hierarchy process. 287 pp, McGrawhill, New York.Google Scholar
  16. Sasse, J. (1998) The forests of Japan. 75pp, Japan Forest Technical Association. Tokyo.Google Scholar
  17. Schmoldt, D. L., Peterson, D. L., and Silsbee, D. G. (1978) Developing inventory and monitoring programs based on multiple objectives. J. Environ. Manage. 18: 707–727.Google Scholar
  18. Schroeder, H. W. and Brown, T. C. (1983) Alternative functional forms for an inventory-based landscape perception model. J. Leisure Res. 13: 156–163.Google Scholar
  19. Schroeder, H. W. and Daniel, T. C. (1981) Progress in predicting the perceived scenic beauty of forest landscapes. For. Sci. 27: 71–80.Google Scholar
  20. Shafer, E. L., Jr., Hamilton, J. F., Jr., and Schmidt, E. A. (1969) Natural landscape preferences: a predictive model. J. Leisure Res. 1(1): 1–19.Google Scholar
  21. Thurstone, L. L. (1948) Psychophysical methods in: methods of psychology. T. G. Andrews (ed.), John Wiley, New York, 124–157.Google Scholar
  22. Zahedi, F. (1986) The analytic hierarchy process, a survey of the method and its applications. Interfaces 16: 96–108.CrossRefGoogle Scholar

Appendixes

  1. BioComp Systems. Inc. (1995) NeuroGenetic Optimizer user manual (ver. 2.0.0). 135pp, BioComp System Inc., Redmond.Google Scholar
  2. Brown, T. C. and Daniel, T. C. (1986) Predicting scenic beauty of timber stands. For. Sci. 32: 471–487.Google Scholar
  3. Buhyoff, G. J., Gauthier, L. J., and Wellman, J. D. (1984) Predicting scenic quality for urban forests using vegetation measurements. For. Sci. 30(1): 71–82.Google Scholar
  4. Liao, W. M., Nogami, K., and Imanaga, M. A. (1998) An application of Neurogenetic Algorithm System to individual tree growth model. J. For. Res. 3: 79–84.Google Scholar
  5. Takeuchi, R., Liao, W. M., Yoshida, S. I., and Nogami, K. (1998) Construction of image structure model for open space. Chubu For. Res. 46: 33–34. (in Japanese)Google Scholar

Copyright information

© The Japanese Forest Society and Springer 1999

Authors and Affiliations

  • Weiming Liao
    • 1
  • Keiitirou Nogami
    • 1
  1. 1.Faculty of AgricultureShizuoka UniversityShizuokaJapan

Personalised recommendations