Israel Journal of Mathematics

, Volume 33, Issue 3–4, pp 241–269 | Cite as

A fundamental property of Markov processes with an application to equivalence under time changes

  • R. V. Chacon
  • B. Jamison


It is shown that Markov processes traverse their trajectories in just one way, and applications are given to the Blumenthal, Getoor and McKean theorem.


Probability Measure Markov Process Transition Function Point Mass Sample Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. M. Blumenthal and R. K. Getoor,Markov Processes and Potential Theory, Academic Press, New York, 1968.MATHGoogle Scholar
  2. 2.
    R. V. Chacon and B. Jamison,Processes with state-dependent hitting probabilities and their equivalence under time changes, to appear in Advances in Math.Google Scholar
  3. 3.
    L. E. Dubins and G. Schwartz,On continuous martingales, Proc. Nat. Acad. Sci. USA53 (1965), 913–916.MATHCrossRefGoogle Scholar
  4. 4.
    E. B. Dynkin,Markov Processes, Vol. I, Springer Verlag, Berlin, 1965.MATHGoogle Scholar
  5. 5.
    M. Loéve,Probability theory (3rd. ed.), Van Nostrand, New York, 1963.MATHGoogle Scholar
  6. 6.
    P. A. Meyer,Probability and Potentials, Blaisdell, Boston, 1966.MATHGoogle Scholar
  7. 7.
    P. A. Meyer,La theorie de la prediction de F. Knight, Seminaire de Pr. X, Lecture Notes n° 57, Springer-Verlag, 1976.Google Scholar
  8. 8.
    R. V. Chacon and B. Jamison,Sample path consistency for Markov processes, to appear.Google Scholar
  9. 9.
    R. V. Chacon and B. Jamison,Traversal times of Markov processes, Bull. Amer. Math. Soc.1 (1979).Google Scholar

Copyright information

© Hebrew University 1979

Authors and Affiliations

  • R. V. Chacon
    • 1
    • 2
  • B. Jamison
    • 1
    • 2
  1. 1.Department of MathematicsUniversity of British ColumbiaVancouverCanada
  2. 2.Department of MathematicsState University of New York at AlbanyAlbanyUSA

Personalised recommendations