Israel Journal of Mathematics

, Volume 33, Issue 3–4, pp 177–180 | Cite as

Pointwise convergence of the iterates of a harris-recurrent Markov operator

  • Shlomo Horowitz


LetP be a Markov operator recurrent in the sense of Harris, withσ-finite invariant measureμ. (1) Ifμ is finite andP aperiodic, then forfL 1(μ),P nf →f fdμ a.e. (2) Ifμ is infinite,P nf → 0 a.e. for everyfL p (μ), 1≦p <∞.


Markov Chain Limit Theorem Markov Process Invariant Measure POINTWISE Convergence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. L. Doob,Stochastic Processes, Wiley, New York, 1953.MATHGoogle Scholar
  2. 2.
    S. R. Foguel,Ergodic Theory of Markov Processes, Van Nostrand-Reinhold, New York, 1969.MATHGoogle Scholar
  3. 3.
    S. Horowitz,Transition probabilities and contractions of L , Z. Wahrscheinlichkeitstheorie24 (1972), 263–274.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    N. C. Jain,A note on invariant measures, Ann. Math. Statist.37 (1966), 729–732.MathSciNetGoogle Scholar
  5. 5.
    N. C. Jain,Some limit theorems for a general Markov process, Z. Wahrscheinlichkeitstheorie6 (1966), 206–223.MATHCrossRefGoogle Scholar
  6. 6.
    E. Nummelin and R. L. Tweedie,Geometric ergodicity and R-positivity for general Markov chains, Ann. Probability, to appear.Google Scholar
  7. 7.
    S. Orey,Recurrent Markov chains, Pacific J. Math.9 (1959), 805–827.MATHMathSciNetGoogle Scholar
  8. 8.
    S. Orey,Lecture Notes on Limit Theorems for Markov Chain Transition Probabilities, Van Nostrand, New York, 1971.MATHGoogle Scholar

Copyright information

© Hebrew University 1979

Authors and Affiliations

  • Shlomo Horowitz
    • 1
  1. 1.Tel Aviv University Ramat AvivTel AvivIsrael

Personalised recommendations