Israel Journal of Mathematics

, Volume 92, Issue 1–3, pp 61–112 | Cite as

Some results on the nonstationary ideal



The strength of precipitousness, presaturatedness and saturatedness of NSκ and NS κ λ is studied. In particular, it is shown that:
  1. (1)

    The exact strength of “\(NS_{\mu ^ + }^\lambda \) for a regularμ > max(λ, ℵ1)” is a (ω,μ)-repeat point.

  2. (2)

    The exact strength of “NSκ is presaturated over inaccessible κ” is an up-repeat point.

  3. (3)

    “NSκ is saturated over inaccessible κ” implies an inner model with ∃αo(α) =α ++.



Generic Extension Generic Subset Regular Cardinal Measurable Cardinal Elementary Chain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B-T-W] J. Baumgartner, A. Taylor and S. Wagon,On splitting stationary subsets of large cardinals, Journal of Symbolic Logic42 (1977), 203–214.MATHCrossRefMathSciNetGoogle Scholar
  2. [F-M-S] M. Foreman, M. Magidor and S. Shelah,Martin Maximum, saturated ideals and non-regular ultrafilters, Part 1, Annals of Mathematics127 (1988), 1–47.CrossRefMathSciNetGoogle Scholar
  3. [G1] M. Gitik,On nonminimal P-points over a measurable cardinal, Annals of Mathematical Logic20 (1981), 269–288.MATHCrossRefMathSciNetGoogle Scholar
  4. [G2] M. Gitik,The nonstationary ideal on ℵ 2 Israel Journal of Mathematics48 (1984), 257–288.MATHCrossRefMathSciNetGoogle Scholar
  5. [G3] M. Gitik,Changing cofinalities and the nonstationary ideal, Israel Journal of Mathematics56 (1986), 280–314.MATHCrossRefMathSciNetGoogle Scholar
  6. [G4] M. Gitik,The negation of the SCH from O (κ) =κ ++, Annals of Pure and Applied Logic43 (1989), 209–234.MATHCrossRefMathSciNetGoogle Scholar
  7. [G5] M. Gitik,On the Mitchell and Rudin-Keisler ordering of ultrafilters, Annals of Pure and Applied Logic39 (1988), 175–197.MATHCrossRefMathSciNetGoogle Scholar
  8. [G6] M. Gitik,On precipitousness of the nonstationary ideal over a supercompact, Journal of Symbolic Logic51 (1986), 648–662.MATHCrossRefMathSciNetGoogle Scholar
  9. [J1] T. Jech,Set Theory, Academic Press, New York, 1978.Google Scholar
  10. [J2] T. Jech,Stationary subsets of inaccessible cardinals, Contemporary Mathematics31 (1984), 115–142.MathSciNetGoogle Scholar
  11. [J-M-M-P] T. Jech, M. Magidor, W. Mitchell and K. Prikry,Precipitous ideals, Journal of Symbolic Logic45 (1980), 1–8.MATHCrossRefMathSciNetGoogle Scholar
  12. [J-W] T. Jech and H. Woodin,Saturation of the closed unbounded filter on the set of regular cardinals, Transactions of the American Mathematical Society292 (1985), 345–356.MATHCrossRefMathSciNetGoogle Scholar
  13. [K-M] A. Kanamori and M. Magidor,The evolution of large cardinals in set theory, in Lecture Notes in Mathematics669,Higher Set Theory (G. Müller and D. Scott, eds.), Springer-Verlag, Berlin, 1978, pp. 99–275.Google Scholar
  14. [M] M. Magidor,Precipitous ideals and ε 41 sets, Israel Journal of Mathematics35 (1980), 109–134.MATHCrossRefMathSciNetGoogle Scholar
  15. [Mi1] W. Mitchell,How weak is a closed unbounded ultrafilter?, inLogic Colloquium 1980, Studies in Logic, Vol. 108, North-Holland, Amsterdam, 1982, pp. 209–230.Google Scholar
  16. [Mi2] W. Mitchell,The core model for sequences of measures I, Mathematical Proceedings of the Cambridge Philosophical Society95 (1984), 229–260.MATHMathSciNetCrossRefGoogle Scholar
  17. [Mi3] W. Mitchell,The core model for sequences of measures II, to appear.Google Scholar
  18. [Mi4] W. Mitchell,Applications of the covering lemma for sequences of measures, Transactions of the American Mathematical Society299 (1987), 41–58.MATHCrossRefMathSciNetGoogle Scholar
  19. [N] K. Namba,On the closed unbounded ideal of ordinal numbers, Comm. Math. Univ. St. Pauli22 (1974), 33–56.MathSciNetGoogle Scholar
  20. [R] L. Radin,Adding closed cofinal sequences to large cardinals, Annals of Mathematical Logic23 (1982), 263–283.MathSciNetGoogle Scholar
  21. [S] S. Shelah,Proper Forcing, Lecture Notes in Math.940, Springer-Verlag, Berlin, 1982.MATHGoogle Scholar
  22. [S-V] J. Steel and R. Van Wesep,Two consequences of determinancy consistent with choice, Transactions of the American Mathematical Society272 (1982), 67–85.MATHCrossRefMathSciNetGoogle Scholar
  23. [S-W] S. Shelah and H. Woodin,Forcing the failure of CH by adding a real, Journal of Symbolic Logic49 (1984), 1185–1189.MATHCrossRefMathSciNetGoogle Scholar
  24. [W] H. Woodin,Some consistency results in ZF using AD, inCabal Seminar 79–81, Lecture Notes in Mathematics1019, Springer-Verlag, Berlin, 1983, pp. 172–199.CrossRefGoogle Scholar
  25. [Sc] E. Schimmerling, Ph.D. thesis, UCLA, 1991.Google Scholar

Copyright information

© Hebrew University 1995

Authors and Affiliations

  1. 1.Raymond and Beverly Sackler Faculty of Exact SciencesTel Aviv UniversityTel AvivIsrael

Personalised recommendations