Advertisement

Israel Journal of Mathematics

, Volume 92, Issue 1–3, pp 61–112 | Cite as

Some results on the nonstationary ideal

  • Moti Gitik
Article

Abstract

The strength of precipitousness, presaturatedness and saturatedness of NSκ and NS κ λ is studied. In particular, it is shown that:
  1. (1)

    The exact strength of “\(NS_{\mu ^ + }^\lambda \) for a regularμ > max(λ, ℵ1)” is a (ω,μ)-repeat point.

     
  2. (2)

    The exact strength of “NSκ is presaturated over inaccessible κ” is an up-repeat point.

     
  3. (3)

    “NSκ is saturated over inaccessible κ” implies an inner model with ∃αo(α) =α ++.

     

Keywords

Generic Extension Generic Subset Regular Cardinal Measurable Cardinal Elementary Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B-T-W] J. Baumgartner, A. Taylor and S. Wagon,On splitting stationary subsets of large cardinals, Journal of Symbolic Logic42 (1977), 203–214.MATHCrossRefMathSciNetGoogle Scholar
  2. [F-M-S] M. Foreman, M. Magidor and S. Shelah,Martin Maximum, saturated ideals and non-regular ultrafilters, Part 1, Annals of Mathematics127 (1988), 1–47.CrossRefMathSciNetGoogle Scholar
  3. [G1] M. Gitik,On nonminimal P-points over a measurable cardinal, Annals of Mathematical Logic20 (1981), 269–288.MATHCrossRefMathSciNetGoogle Scholar
  4. [G2] M. Gitik,The nonstationary ideal on ℵ 2 Israel Journal of Mathematics48 (1984), 257–288.MATHCrossRefMathSciNetGoogle Scholar
  5. [G3] M. Gitik,Changing cofinalities and the nonstationary ideal, Israel Journal of Mathematics56 (1986), 280–314.MATHCrossRefMathSciNetGoogle Scholar
  6. [G4] M. Gitik,The negation of the SCH from O (κ) =κ ++, Annals of Pure and Applied Logic43 (1989), 209–234.MATHCrossRefMathSciNetGoogle Scholar
  7. [G5] M. Gitik,On the Mitchell and Rudin-Keisler ordering of ultrafilters, Annals of Pure and Applied Logic39 (1988), 175–197.MATHCrossRefMathSciNetGoogle Scholar
  8. [G6] M. Gitik,On precipitousness of the nonstationary ideal over a supercompact, Journal of Symbolic Logic51 (1986), 648–662.MATHCrossRefMathSciNetGoogle Scholar
  9. [J1] T. Jech,Set Theory, Academic Press, New York, 1978.Google Scholar
  10. [J2] T. Jech,Stationary subsets of inaccessible cardinals, Contemporary Mathematics31 (1984), 115–142.MathSciNetGoogle Scholar
  11. [J-M-M-P] T. Jech, M. Magidor, W. Mitchell and K. Prikry,Precipitous ideals, Journal of Symbolic Logic45 (1980), 1–8.MATHCrossRefMathSciNetGoogle Scholar
  12. [J-W] T. Jech and H. Woodin,Saturation of the closed unbounded filter on the set of regular cardinals, Transactions of the American Mathematical Society292 (1985), 345–356.MATHCrossRefMathSciNetGoogle Scholar
  13. [K-M] A. Kanamori and M. Magidor,The evolution of large cardinals in set theory, in Lecture Notes in Mathematics669,Higher Set Theory (G. Müller and D. Scott, eds.), Springer-Verlag, Berlin, 1978, pp. 99–275.Google Scholar
  14. [M] M. Magidor,Precipitous ideals and ε 41 sets, Israel Journal of Mathematics35 (1980), 109–134.MATHCrossRefMathSciNetGoogle Scholar
  15. [Mi1] W. Mitchell,How weak is a closed unbounded ultrafilter?, inLogic Colloquium 1980, Studies in Logic, Vol. 108, North-Holland, Amsterdam, 1982, pp. 209–230.Google Scholar
  16. [Mi2] W. Mitchell,The core model for sequences of measures I, Mathematical Proceedings of the Cambridge Philosophical Society95 (1984), 229–260.MATHMathSciNetCrossRefGoogle Scholar
  17. [Mi3] W. Mitchell,The core model for sequences of measures II, to appear.Google Scholar
  18. [Mi4] W. Mitchell,Applications of the covering lemma for sequences of measures, Transactions of the American Mathematical Society299 (1987), 41–58.MATHCrossRefMathSciNetGoogle Scholar
  19. [N] K. Namba,On the closed unbounded ideal of ordinal numbers, Comm. Math. Univ. St. Pauli22 (1974), 33–56.MathSciNetGoogle Scholar
  20. [R] L. Radin,Adding closed cofinal sequences to large cardinals, Annals of Mathematical Logic23 (1982), 263–283.MathSciNetGoogle Scholar
  21. [S] S. Shelah,Proper Forcing, Lecture Notes in Math.940, Springer-Verlag, Berlin, 1982.MATHGoogle Scholar
  22. [S-V] J. Steel and R. Van Wesep,Two consequences of determinancy consistent with choice, Transactions of the American Mathematical Society272 (1982), 67–85.MATHCrossRefMathSciNetGoogle Scholar
  23. [S-W] S. Shelah and H. Woodin,Forcing the failure of CH by adding a real, Journal of Symbolic Logic49 (1984), 1185–1189.MATHCrossRefMathSciNetGoogle Scholar
  24. [W] H. Woodin,Some consistency results in ZF using AD, inCabal Seminar 79–81, Lecture Notes in Mathematics1019, Springer-Verlag, Berlin, 1983, pp. 172–199.CrossRefGoogle Scholar
  25. [Sc] E. Schimmerling, Ph.D. thesis, UCLA, 1991.Google Scholar

Copyright information

© Hebrew University 1995

Authors and Affiliations

  1. 1.Raymond and Beverly Sackler Faculty of Exact SciencesTel Aviv UniversityTel AvivIsrael

Personalised recommendations