Statistical Papers

, Volume 46, Issue 1, pp 143–146 | Cite as

Problem Section

  • Heinz Neudecker


Column Vector Linear Algebra Statistical Inference Symmetric Matrix Matrix Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Dunajeva, O. (2003):Asymptotic Matrix Methods in Statistical Inference Problems, PhD Thesis, Faculty of Mathematics and Computer Science, University of TartuTartu, Estonia. p. 65.MATHGoogle Scholar
  2. Fang, K.-T., Kollo, T. and Parring, A.-M. (2000): Approximation of the non-null distribution of generalizedT 2-statistics.Linear Algebra Appl. 321, pp. 27–46.MATHCrossRefMathSciNetGoogle Scholar
  3. Kollo, T. and Neudecker, H. (1997): The derivative of an orthogonal matrix of eigenvectors of a symmetric matrix.Linear Algebra Appl. 264, pp. 489–493.MATHCrossRefMathSciNetGoogle Scholar


  1. K.-T. Fang, T. Kollo andA.-M. Parring:Approximation of the non-null distribution of generalized T 2-statistics. Linear Algebra Appl. 321 (2000) 27–46.MATHCrossRefMathSciNetGoogle Scholar
  2. J.R. Magnus andH. Neudecker:The commutation matrix, some properties and applications. Ann Statist. 7 (1979), 381–394.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Heinz Neudecker
    • 1
  1. 1.University of AmsterdamThe Netherlands

Personalised recommendations