Israel Journal of Mathematics

, Volume 34, Issue 1–2, pp 121–138 | Cite as

Amenable subgroups of semi-simple groups and proximal flows

  • Calvin C. Moore


We present a classification of maximal amenable subgroups of a semi-simple groupG. The result is that modulo a technical connectivity condition, there are precisely 2′ conjugacy classes of such subgroups ofG and we shall describe them explicitly. Herel is the split rank of the groupG. These groups are the isotropy groups of the action ofG on the Satake-Furstenberg compactification of the associated symmetric space and our results give necessary and sufficient conditions for a subgroup to have a fixed point in this compactification. We also study the action ofG on the set of all measures on its maximal boundary. One consequence of this is a proof that the algebraic hull of an amenable subgroup of a linear group is amenable.


Algebraic Group Parabolic Subgroup Real Point Maximal Compact Subgroup Linear Algebraic Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Arveson,An Invitation to C*-algebras, Springer Verlag, New York, 1976.MATHGoogle Scholar
  2. 2.
    A. Borel,Groupes linéaires algébriques, Ann. of Math.64 (1956), 20–80.CrossRefMathSciNetGoogle Scholar
  3. 3.
    A. Borel and J. Tits,Groupes réductifs, Publ. Math. I.H.E.S.27 (1965), 55–151.MathSciNetGoogle Scholar
  4. 4.
    A. Borel and J. Tits,Éléments unipotents et sous-groupes paraboliques de groupes réductifs I, Invent. Math.12 (1971), 95–104.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    H. Furstenberg,A Poisson formula for semi-simple Lie groups, Ann. of Math.77 (1963), 335–383.CrossRefMathSciNetGoogle Scholar
  6. 6.
    S. Glasner,Proximal Flows, Springer Lecture Notes in Mathematics, No. 517, 1976.Google Scholar
  7. 7.
    J. Humphreys,Linear Algebraic Groups, Springer Verlag, New York, 1975.MATHGoogle Scholar
  8. 8.
    G. W. Mackey,Borel structures in groups and their duals, Trans. Amer. Math. Soc.85 (1957), 134–165.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    C. C. Moore,Compactifications of symmetric spaces I, Amer. J. Math.86 (1964), 201–218.CrossRefMathSciNetGoogle Scholar
  10. 10.
    C. C. Moore,Flows on homogeneous spaces, Amer. J. Math.88 (1966), 154–178.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    L. Pukanszky,Unitary representations of exponential solvable Lie groups, J. Functional Analysis2 (1968), 73–113.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    I. Satake,On representations and compactifications of symmetric spaces, Ann. of Math.71 (1960), 77–110.CrossRefMathSciNetGoogle Scholar
  13. 13.
    J. Tits,Free subgroups in linear groups, J. Algebra20 (1972), 250–270.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    R. J. Zimmer,Amenable ergodic group actions and an application to Poisson boundaries of random walks, J. Functional Analysis, to appear.Google Scholar
  15. 15.
    R. J. Zimmer,Induced and amenable ergodic actions of Lie groups, preprint.Google Scholar

Copyright information

© The Weizmann Science Press of Israel 1979

Authors and Affiliations

  • Calvin C. Moore
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations