Advertisement

Journal of Molecular Neuroscience

, Volume 10, Issue 3, pp 181–192 | Cite as

Amyloid β-peptide(1–40)-mediated oxidative stress in cultured hippocampal neurons

Protein carbonyl formation, CK BB expression, and the level of Cu, Zn, and Mn SOD mRNA
  • Michael Y. Aksenov
  • Marina V. Aksenova
  • William R. Markesbery
  • D. Allan Butterfield
Article

Abstract

Mechanism of amyloid β-peptide (Aβ) toxicity in cultured neurons involves the development of oxidative stress in the affected cells. A significant increase in protein carbonyl formation was detected in cultured hippocampal neurons soon after the addition of preaggregated Aβ(1–40), indicating oxidative damage of proteins. We report that neurons, subjected to Aβ(1–40), respond to Aβ oxidative impact by activation of antioxidant defense mechanisms and alternative ATP-regenerating pathway. The study demonstrates an increase of Mn SOD gene expression and the restoration of Cu, Zn SOD gene expression to a normal level after temporary suppression. Partial loss of creatine kinase (CK) BB activity, which is the key enzyme for functioning of the creatine/phosphocreatine shuttle, was compensated in neurons surviving the Aβ oxidative attack by increased production of the enzyme. As soon as the oxidative attack triggered by the addition of preaggregated Aβ(1–40) to rat hippocampal cell cultures has been extinguished, CK BB expression and SOD isoenzyme-specific mRNA levels in surviving neurons return to normal.

We propose that the maintenance of a constant level of CK function by increased CK BB production together with the induction of antioxidant enzyme gene expression in Aβ-treated hippocampal neurons accounts for at least part of their adaptation to Aβ toxicity.

Index Entries

Amyloid β-peptide oxidative stress protein carbonyls CK BB SOD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aksenov M. Y., Aksenova M. V., Carney J. M., and Butterfield D. A. (1997a) Oxidative modification of glutamine synthetase by amyloid beta peptide.Free Radical Res. 27, 267–281.Google Scholar
  2. Aksenov M. Y., Aksenova M. V., Payne R. M., Smith C. D., Markesbery W. R., and Carney J. (1997b) The expression of creatine kinase isoenzymes in neocortex of patients with neurodegenerative disorders: Alzheimer’s and Pick’s disease.Exp. Neurol. 146, 458–465.PubMedCrossRefGoogle Scholar
  3. Banerjee A., Grosso M. A., Brown J. M., Rogers K. B., and Whitman G. J. R. (1991) Oxygen metabolite effects on creatine kinase and cardiac energetics after reperfusion.Am. J. Physiol. 261, H590-H597.PubMedGoogle Scholar
  4. Behl C. and Sagara Y. (1997) Mechanism of amyloid beta protein induced neuronal cell death: current concepts and future perspectives.J. Neural Trans. Suppl. 49, 125–134.Google Scholar
  5. Bessman S. P. (1985) The creatine-creatine phosphate energy shutle.Annu. Rev. Biochem. 54, 831.PubMedCrossRefGoogle Scholar
  6. Bowling A. C. and Beal M. F. (1995) Bioenergetic and oxidative stress in neurodegenerative diseases.Life Sci. 56, 1151–1171.PubMedCrossRefGoogle Scholar
  7. Brewer G. J., Torricelli J. R., Evege E. K., and Price P. J. (1993) Optimized survival of hippocampal neurons in B27-supplemented neurobasal, a new serum-free medium combination.J. Neurosci. Res. 35, 567–576.PubMedCrossRefGoogle Scholar
  8. Burbaeva G. S., Aksenova M. V., Makarenko I. G. (1992) Decreased level of creatine kinase BB in the frontal cortex of Alzheimer patients.Dementia 3, 91–94.CrossRefGoogle Scholar
  9. Butterfield D. A. (1997) β-Amyloid-associated free radical oxidative stress and neurotoxicity: implications for Alzheimer’s disease.Chem. Res. Toxicol. 10, 495–506.PubMedCrossRefGoogle Scholar
  10. Butterfield D. A., Hensley K., Harris M., Mattson M., and Carney J. (1994) β-Amyloid peptide free radical fragments initiate synaptosomal lipoperoxidation in a sequence-specific fashion: implications to Alzheimer’s disease.Biochem. Biophys. Res. Commun. 200, 710–715.PubMedCrossRefGoogle Scholar
  11. Butterfield D. A., Hensley K., Hall N., Subramaniam R., Howard B. J., Cole P., et al. (1996) Beta-amyloid-derived free radical oxidation: a fundamental process in Alzheimer’s disease, inMolecular Models of Dementia (Tanzi R. E. and Wasco W., eds.), Humana, Totowa, NJ, pp. 145–167.Google Scholar
  12. Cafe C., Torri C., Bertorelli L., Angeretti N., Lucca E., Forloni G., and Marzatico F. (1996) Oxidative stress after acute and chronic application of β-amyloid fragment 25–35 in cortical ciltures.Neurosci. Lett. 203, 61–65.CrossRefGoogle Scholar
  13. Chromczynski P. and Sacchi N. (1987) Single-step method of RNA isolation by acid guanidinum thiocyanate-phenol-chloroform extraction.Anal. Biochem. 162, 156–159.Google Scholar
  14. Davis J. B. (1996) Oxidative mechanisms in beta-amyloid cytotoxicity.Neurodegeneration 5, 441–444.CrossRefGoogle Scholar
  15. Davis-Salinas J., Saporito-Irwin S. M., Cotman C. W., and Van Nostrand W. E. (1995) Amyloid beta-protein induces its own production in cultured degenerating cerebrovascular smooth muscle cells.J. Neurochem. 65, 931–934.PubMedCrossRefGoogle Scholar
  16. Estus S., Tucker H. M., van Rooyen C., Wright S., Brigham E., Wogulis M., et al. (1997) Aggregated amyloid-β protein induces cortical neuronal apoptosis and concominant “apoptotic” pattern of gene induction.J. Neurosci. 17, 7736–7745.PubMedGoogle Scholar
  17. Friedman D. L. and Roberts R. (1994) Compartmentation of brain-type creatine kinase and ubiquitous mitochondrial creatine kinase in neurons: evidence for a creatine phosphate energy shuttle in adult rat brain.J. Comp. Neurol. 343, 500–511.PubMedCrossRefGoogle Scholar
  18. Games D., Adams D., Alessandrini R., Barbour R., Berthelette P., Blackwell C., et al. (1995) Alzheimertype neuropathology in transgenic mice over-expressing V717F β-amyloid precursor protein.Nature 373, 523–527.PubMedCrossRefGoogle Scholar
  19. Gillardon F., Skutella T., Uhlmann E., Holsboer F., Zimmermann M., and Behl C. (1996) Activation of c-Fos contributes to amyloid beta-peptide-induced neurotoxicity.Brain Res. 706, 169–172.CrossRefGoogle Scholar
  20. Glenney J. R. (1986) Antibody probing on Western blots have been stained with india ink.Anal. Biochem. 156, 315–318.PubMedCrossRefGoogle Scholar
  21. Harris M. E., Hensley K., Butterfield D. A., Leedle R. E., and Carney J. M. (1995) Direct evidence of oxidative injury by the Alzheimer’s amyloid β-peptide in cultured hippocampal neurons.Exp. Neurol. 131, 193–202.PubMedCrossRefGoogle Scholar
  22. Hemmer W. and Walliman T. (1993) Functional aspects of creatine kinase in brain.Dev. Neurosci. 15, 249–260.PubMedCrossRefGoogle Scholar
  23. Hensley K., Carney J. M., Mattson M. P., Aksenova M. V., Harris M. E., Wu J. F., et al. (1994) A model for β-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer’s disease.Proc. Natl. Acad. Sci. USA 91, 3270–3274.PubMedCrossRefGoogle Scholar
  24. Hensley K., Aksenova M., Carney J. M., Harris M., and Butterfield D. A. (1995) Amyloid β-peptide spin trapping I: peptide enzyme toxicity is related to free radical spin trap reactivity.Neuroreport 6, 489–492.PubMedCrossRefGoogle Scholar
  25. Iwasaki K., Sunderland T., Kusiak J. W., and Wolozin B. (1996) Changes in gene transcription during a beta-mediated cell death.Mol. Psych. 1, 65–71.Google Scholar
  26. Kaneko I., Yamada N., Sakuraba Y., Kamenosomo M., and Tutumi S. (1995) Suppression of mitochondrial succinate dehydrogenase, a primary target of β-amyloid, and its derivative racemized at Ser residue.J. Neurochem. 65, 2585–2593.PubMedCrossRefGoogle Scholar
  27. Kelly J., Furukawa K., Barger S. W., Mark R. J., Rengen M. R., Roth G., and Mattson M. P. (1996) Amyloid β-peptide disrupts carbachol-induced muscarinic cholinergic signal transduction in cortical neurons: involvement of free radicals.Proc. Natl. Acad. Sci. USA 93, 6753–6758.CrossRefGoogle Scholar
  28. Levine R. L., Garland D., Oliver C. N., Amici A., Climent I., Lenz A.-G., et al. (1990) Determination of carbonyl content in oxidatively modified proteins.Methods Enzymol. 186, 464.PubMedCrossRefGoogle Scholar
  29. Levine R. L., Williams J. A., Stadtman E. R., and Shacter E. (1994) Carbonyl assays for determination of oxidatively modified proteins.Methods Enzymol. 233, 346–357.PubMedGoogle Scholar
  30. Loo D. T., Copani A., Pike C. J., Whittemore E. R., Walencewicz A. J., and Cotman C. W. (1993) Apoptosis is induced by β-amyloid in cultured central nervous system neurons.Proc. Natl. Acad. Sci. USA 90, 7951–7955.PubMedCrossRefGoogle Scholar
  31. Manelli A. M. and Puttfarcken P. S. (1995) β-Amyloid-induced toxicity in rat hippocampal cells: in vitro evidence for the involvement of free radicals.Brain Res. Bull. 38, 569–576.PubMedCrossRefGoogle Scholar
  32. Mark R. J., Hensley K., Butterfield D. A., and Mattson M. P. (1995) Amyloid β-peptide impairs ion-motive ATPase activities: evidence for a role in loss of neuronal Ca2+ homeostasis and cell death.J. Neurosci. 15, 6239–6249.PubMedGoogle Scholar
  33. Mark R. J., Blanc E. M., and Mattson M. P. (1996) Amyloid beta-peptide and oxidative cellular injury in Alzheimer’s disease.Mol. Neurobiol. 12, 211–224.Google Scholar
  34. Markesbery W. R. (1997) Oxidative stress hypothesis in Alzheimer’s disease.Free Radical Biol. Med. 23, 134–147.CrossRefGoogle Scholar
  35. Mattson M. P., Barger S. W., Cheng B., Lieberburg I., Smith-Swintosky V. L., and Rydel R. E. (1992) β-Amyloid precursor protein metabolites and loss of neuronal Ca2+ homeostasis in Alzheimer’s disease.Trends Neurosci. 16, 409–414.CrossRefGoogle Scholar
  36. Mattson M. P., Tomaselli K. J., and Rydel R. E. (1993) Calcium-destabilizing and neurodegenerative effects of aggregated β-amyloid peptide are attenuated by basic FGF.Brain Res. 621, 35–49.PubMedCrossRefGoogle Scholar
  37. Mattson M. P., Goodman Y., Luo H., Fu W., and Furukawa K. (1997) Activation of NF-kappaB protects hippocampal neurons against oxidative stress-induced apoptosis: evidence for induction of manganese superoxide dismutase and suppression of peroxynitrite production and protein tyrosine nitration.J. Neurosci. Res. 49, 681–697.PubMedCrossRefGoogle Scholar
  38. May P. C., Gitter B. D., Waters D. C., Simmons L. K., Becker G. W., Small J. S., et al. (1992) β-Amyloid peptide in vitro toxicity: lot-to-lot variability.Neurobiol. Aging 13, 605–607.PubMedCrossRefGoogle Scholar
  39. Payne R. M. and Strauss A. W. (1994) Developmental expression of sarcomeric and ubiquitous mitochondrial creatine kinase is tissue-specific.Biochim. Biophys. Acta. 1219, 33–38.PubMedGoogle Scholar
  40. Pike C. J., Burdick D., Walencewicz A. J., Glabe C. G., and Cotman C. W. (1993) Neurodegeneration induced by β-amyloid peptides in vitro: the role of peptide assembly state.J. Neurosci. 13, 1676–1687PubMedGoogle Scholar
  41. Pike C. J., Ramezan-Arab N., and Cotman C. W. (1997) β-Amyloid neurotoxicity in vitro: evidence of oxidative stress but not protection by antioxidants.J. Neurochem. 69, 1601–1611.PubMedCrossRefGoogle Scholar
  42. Puttfarcken P. S., Manelli A. M., Neilly J., and Frail D. E. (1996) Inhibition of age-induced β-amyloid neurotoxicity in rat hippocampal cells.Exp. Neurol. 138, 73–81.CrossRefGoogle Scholar
  43. Roher A. E., Palmer K. C., Yurewicz E. C., Ball M. J., and Greenberg B. D. (1993) Morphological and biochemical analyses of amyloid plague core proteins purified from Alzheimer disease tissue.J. Neurochem. 61, 1916–1926.PubMedCrossRefGoogle Scholar
  44. Sagara Y., Dargusch R., Klier F. G., Schubert D., and Behl C. (1996) Increased antioxidant enzyme activity in amyloid beta protein-resistant cells.J. Neurosci. 16, 497–505.Google Scholar
  45. Schubert D., Behl C., Lesley R., Brack A., Gargusch R., Sagara Y., et al. (1995) Amyloid peptides are toxic via a common oxidative mechanism.Proc. Natl. Acad. Sci. USA 92, 1989–1993.PubMedCrossRefGoogle Scholar
  46. Selkoe D. J. (1996) Amyloid β-protein and the genetics of Alzheimer’s disease.J. Biol. Chem. 271, 18,295–18,298.Google Scholar
  47. Shearman M. S., Ragan C. I., and Iversen L. L. (1994) Inhibition of PC12 cell redox activity is a specific, early indicator of the mechanism of β-amyloid-mediated cell death.Proc. Natl. Acad. Sci. USA 91, 1470–1474.PubMedCrossRefGoogle Scholar
  48. Shearman M. S., Hawtin S. R., and Tailor V. J. (1995) The intracellular component of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction is specifically inhibited by beta-amyloid peptides.J. Neurochem. 65, 218–227.PubMedCrossRefGoogle Scholar
  49. Takashima A., Yamaguchi H., Noguchi K., Michel G., Ishiguro K., Sato K., et al. (1995) Amyloid beta prptide induces cytoplasmic accumulation of amyloid protein precursor via tau protein kinase 1/glycogen synthase kinase-3 beta in rat hippocampal neurons.Neurosci. Lett. 198, 83–86.PubMedCrossRefGoogle Scholar
  50. Thomas C., Carr A. C., and Winterbourn C. C. (1994) Free radical inactivation of rabbit muscle creatine kinase: catalysis by physiological and hydrolyzed ICRF-187 (ICRF-198) iron chelates.Free Radical Res. 21, 387–397.CrossRefGoogle Scholar
  51. Ueda K., Shinohara S., Yagami T., Asakura K., and Kawasaki K. (1997) Amyloid β protein potentiates Ca2+ influx through L-type voltage-sensitive Ca2+ channels: a possible involvement of free radicals.J. Neurochem. 68, 265–271.PubMedCrossRefGoogle Scholar
  52. Wallimann T., Schlosser T., and Eppenberger H. M. (1984) Function of M-line-bound creatine kinase as intramyofibrillar ATP regenerator and the receiving end of the phosphorylcreatine shuttle in muscle.J. Biol. Chem. 259, 5238–5246.PubMedGoogle Scholar
  53. Wallimann T., Walzthony D., Wegmann G., Moser H., Eppenberger H. M., and Barrantes F. J. (1985) Subcellular localization of creatine kinase in Torpedo electrocytes: association with acetylcholine receptor-rich membranes.J. Cell. Biol. 100, 1063–1072.PubMedCrossRefGoogle Scholar
  54. Wujek J. R., Dority M. D., Frederickson R. C. A., and Brunden K. R. (1996) Deposits of Aβ fibrils are not toxic to cortical and hippocampal neurons in vitro.Neurobiol. Aging 17, 107–113.CrossRefGoogle Scholar
  55. Yan S. D., Chen X., Fu J., Chen M., Zhu H., Roher A., et al. (1996) RAGE and amylois-β peptide neurotoxicity in Alzheimer’s disease.Nature 382, 685–691.CrossRefGoogle Scholar
  56. Yankner B. A., Duffy L. K., and Kirschner D. A. (1990) Neurotrophic and neurotoxic effects of amyloid β protein: reversal by tachykinin neuropeptides.Science 250, 279.PubMedCrossRefGoogle Scholar
  57. Zang Z., Rydel R. E., Drzewiecki G. J., Fuson K., Wright S., Wogulis M., et al. (1996) Amyloid β-mediated oxidative and metabolic stress in rat cortical neurons: no direct evidence for a role for H2O2 generation.J. Neurochem. 67, 1595–1606.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1998

Authors and Affiliations

  • Michael Y. Aksenov
    • 1
  • Marina V. Aksenova
    • 2
  • William R. Markesbery
    • 1
    • 3
  • D. Allan Butterfield
    • 4
  1. 1.Sanders-Brown Center on AgingUniversity of KentuckyLexington
  2. 2.Department of PharmacologyUniversity of KentuckyLexington
  3. 3.Department of Pathology and NeurologyUniversity of KentuckyLexington
  4. 4.Department of Chemistry and Center of Membrane SciencesUniversity of KentuckyLexington

Personalised recommendations