Skip to main content
Log in

Amyloid β-peptide(1–40)-mediated oxidative stress in cultured hippocampal neurons

Protein carbonyl formation, CK BB expression, and the level of Cu, Zn, and Mn SOD mRNA

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Mechanism of amyloid β-peptide (Aβ) toxicity in cultured neurons involves the development of oxidative stress in the affected cells. A significant increase in protein carbonyl formation was detected in cultured hippocampal neurons soon after the addition of preaggregated Aβ(1–40), indicating oxidative damage of proteins. We report that neurons, subjected to Aβ(1–40), respond to Aβ oxidative impact by activation of antioxidant defense mechanisms and alternative ATP-regenerating pathway. The study demonstrates an increase of Mn SOD gene expression and the restoration of Cu, Zn SOD gene expression to a normal level after temporary suppression. Partial loss of creatine kinase (CK) BB activity, which is the key enzyme for functioning of the creatine/phosphocreatine shuttle, was compensated in neurons surviving the Aβ oxidative attack by increased production of the enzyme. As soon as the oxidative attack triggered by the addition of preaggregated Aβ(1–40) to rat hippocampal cell cultures has been extinguished, CK BB expression and SOD isoenzyme-specific mRNA levels in surviving neurons return to normal.

We propose that the maintenance of a constant level of CK function by increased CK BB production together with the induction of antioxidant enzyme gene expression in Aβ-treated hippocampal neurons accounts for at least part of their adaptation to Aβ toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aksenov M. Y., Aksenova M. V., Carney J. M., and Butterfield D. A. (1997a) Oxidative modification of glutamine synthetase by amyloid beta peptide.Free Radical Res. 27, 267–281.

    CAS  Google Scholar 

  • Aksenov M. Y., Aksenova M. V., Payne R. M., Smith C. D., Markesbery W. R., and Carney J. (1997b) The expression of creatine kinase isoenzymes in neocortex of patients with neurodegenerative disorders: Alzheimer’s and Pick’s disease.Exp. Neurol. 146, 458–465.

    Article  PubMed  CAS  Google Scholar 

  • Banerjee A., Grosso M. A., Brown J. M., Rogers K. B., and Whitman G. J. R. (1991) Oxygen metabolite effects on creatine kinase and cardiac energetics after reperfusion.Am. J. Physiol. 261, H590-H597.

    PubMed  CAS  Google Scholar 

  • Behl C. and Sagara Y. (1997) Mechanism of amyloid beta protein induced neuronal cell death: current concepts and future perspectives.J. Neural Trans. Suppl. 49, 125–134.

    CAS  Google Scholar 

  • Bessman S. P. (1985) The creatine-creatine phosphate energy shutle.Annu. Rev. Biochem. 54, 831.

    Article  PubMed  CAS  Google Scholar 

  • Bowling A. C. and Beal M. F. (1995) Bioenergetic and oxidative stress in neurodegenerative diseases.Life Sci. 56, 1151–1171.

    Article  PubMed  CAS  Google Scholar 

  • Brewer G. J., Torricelli J. R., Evege E. K., and Price P. J. (1993) Optimized survival of hippocampal neurons in B27-supplemented neurobasal, a new serum-free medium combination.J. Neurosci. Res. 35, 567–576.

    Article  PubMed  CAS  Google Scholar 

  • Burbaeva G. S., Aksenova M. V., Makarenko I. G. (1992) Decreased level of creatine kinase BB in the frontal cortex of Alzheimer patients.Dementia 3, 91–94.

    Article  Google Scholar 

  • Butterfield D. A. (1997) β-Amyloid-associated free radical oxidative stress and neurotoxicity: implications for Alzheimer’s disease.Chem. Res. Toxicol. 10, 495–506.

    Article  PubMed  CAS  Google Scholar 

  • Butterfield D. A., Hensley K., Harris M., Mattson M., and Carney J. (1994) β-Amyloid peptide free radical fragments initiate synaptosomal lipoperoxidation in a sequence-specific fashion: implications to Alzheimer’s disease.Biochem. Biophys. Res. Commun. 200, 710–715.

    Article  PubMed  CAS  Google Scholar 

  • Butterfield D. A., Hensley K., Hall N., Subramaniam R., Howard B. J., Cole P., et al. (1996) Beta-amyloid-derived free radical oxidation: a fundamental process in Alzheimer’s disease, inMolecular Models of Dementia (Tanzi R. E. and Wasco W., eds.), Humana, Totowa, NJ, pp. 145–167.

    Google Scholar 

  • Cafe C., Torri C., Bertorelli L., Angeretti N., Lucca E., Forloni G., and Marzatico F. (1996) Oxidative stress after acute and chronic application of β-amyloid fragment 25–35 in cortical ciltures.Neurosci. Lett. 203, 61–65.

    Article  Google Scholar 

  • Chromczynski P. and Sacchi N. (1987) Single-step method of RNA isolation by acid guanidinum thiocyanate-phenol-chloroform extraction.Anal. Biochem. 162, 156–159.

    Google Scholar 

  • Davis J. B. (1996) Oxidative mechanisms in beta-amyloid cytotoxicity.Neurodegeneration 5, 441–444.

    Article  Google Scholar 

  • Davis-Salinas J., Saporito-Irwin S. M., Cotman C. W., and Van Nostrand W. E. (1995) Amyloid beta-protein induces its own production in cultured degenerating cerebrovascular smooth muscle cells.J. Neurochem. 65, 931–934.

    Article  PubMed  CAS  Google Scholar 

  • Estus S., Tucker H. M., van Rooyen C., Wright S., Brigham E., Wogulis M., et al. (1997) Aggregated amyloid-β protein induces cortical neuronal apoptosis and concominant “apoptotic” pattern of gene induction.J. Neurosci. 17, 7736–7745.

    PubMed  CAS  Google Scholar 

  • Friedman D. L. and Roberts R. (1994) Compartmentation of brain-type creatine kinase and ubiquitous mitochondrial creatine kinase in neurons: evidence for a creatine phosphate energy shuttle in adult rat brain.J. Comp. Neurol. 343, 500–511.

    Article  PubMed  CAS  Google Scholar 

  • Games D., Adams D., Alessandrini R., Barbour R., Berthelette P., Blackwell C., et al. (1995) Alzheimertype neuropathology in transgenic mice over-expressing V717F β-amyloid precursor protein.Nature 373, 523–527.

    Article  PubMed  CAS  Google Scholar 

  • Gillardon F., Skutella T., Uhlmann E., Holsboer F., Zimmermann M., and Behl C. (1996) Activation of c-Fos contributes to amyloid beta-peptide-induced neurotoxicity.Brain Res. 706, 169–172.

    Article  Google Scholar 

  • Glenney J. R. (1986) Antibody probing on Western blots have been stained with india ink.Anal. Biochem. 156, 315–318.

    Article  PubMed  CAS  Google Scholar 

  • Harris M. E., Hensley K., Butterfield D. A., Leedle R. E., and Carney J. M. (1995) Direct evidence of oxidative injury by the Alzheimer’s amyloid β-peptide in cultured hippocampal neurons.Exp. Neurol. 131, 193–202.

    Article  PubMed  CAS  Google Scholar 

  • Hemmer W. and Walliman T. (1993) Functional aspects of creatine kinase in brain.Dev. Neurosci. 15, 249–260.

    Article  PubMed  CAS  Google Scholar 

  • Hensley K., Carney J. M., Mattson M. P., Aksenova M. V., Harris M. E., Wu J. F., et al. (1994) A model for β-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer’s disease.Proc. Natl. Acad. Sci. USA 91, 3270–3274.

    Article  PubMed  CAS  Google Scholar 

  • Hensley K., Aksenova M., Carney J. M., Harris M., and Butterfield D. A. (1995) Amyloid β-peptide spin trapping I: peptide enzyme toxicity is related to free radical spin trap reactivity.Neuroreport 6, 489–492.

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki K., Sunderland T., Kusiak J. W., and Wolozin B. (1996) Changes in gene transcription during a beta-mediated cell death.Mol. Psych. 1, 65–71.

    Google Scholar 

  • Kaneko I., Yamada N., Sakuraba Y., Kamenosomo M., and Tutumi S. (1995) Suppression of mitochondrial succinate dehydrogenase, a primary target of β-amyloid, and its derivative racemized at Ser residue.J. Neurochem. 65, 2585–2593.

    Article  PubMed  CAS  Google Scholar 

  • Kelly J., Furukawa K., Barger S. W., Mark R. J., Rengen M. R., Roth G., and Mattson M. P. (1996) Amyloid β-peptide disrupts carbachol-induced muscarinic cholinergic signal transduction in cortical neurons: involvement of free radicals.Proc. Natl. Acad. Sci. USA 93, 6753–6758.

    Article  Google Scholar 

  • Levine R. L., Garland D., Oliver C. N., Amici A., Climent I., Lenz A.-G., et al. (1990) Determination of carbonyl content in oxidatively modified proteins.Methods Enzymol. 186, 464.

    Article  PubMed  CAS  Google Scholar 

  • Levine R. L., Williams J. A., Stadtman E. R., and Shacter E. (1994) Carbonyl assays for determination of oxidatively modified proteins.Methods Enzymol. 233, 346–357.

    PubMed  CAS  Google Scholar 

  • Loo D. T., Copani A., Pike C. J., Whittemore E. R., Walencewicz A. J., and Cotman C. W. (1993) Apoptosis is induced by β-amyloid in cultured central nervous system neurons.Proc. Natl. Acad. Sci. USA 90, 7951–7955.

    Article  PubMed  CAS  Google Scholar 

  • Manelli A. M. and Puttfarcken P. S. (1995) β-Amyloid-induced toxicity in rat hippocampal cells: in vitro evidence for the involvement of free radicals.Brain Res. Bull. 38, 569–576.

    Article  PubMed  CAS  Google Scholar 

  • Mark R. J., Hensley K., Butterfield D. A., and Mattson M. P. (1995) Amyloid β-peptide impairs ion-motive ATPase activities: evidence for a role in loss of neuronal Ca2+ homeostasis and cell death.J. Neurosci. 15, 6239–6249.

    PubMed  CAS  Google Scholar 

  • Mark R. J., Blanc E. M., and Mattson M. P. (1996) Amyloid beta-peptide and oxidative cellular injury in Alzheimer’s disease.Mol. Neurobiol. 12, 211–224.

    Google Scholar 

  • Markesbery W. R. (1997) Oxidative stress hypothesis in Alzheimer’s disease.Free Radical Biol. Med. 23, 134–147.

    Article  CAS  Google Scholar 

  • Mattson M. P., Barger S. W., Cheng B., Lieberburg I., Smith-Swintosky V. L., and Rydel R. E. (1992) β-Amyloid precursor protein metabolites and loss of neuronal Ca2+ homeostasis in Alzheimer’s disease.Trends Neurosci. 16, 409–414.

    Article  Google Scholar 

  • Mattson M. P., Tomaselli K. J., and Rydel R. E. (1993) Calcium-destabilizing and neurodegenerative effects of aggregated β-amyloid peptide are attenuated by basic FGF.Brain Res. 621, 35–49.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P., Goodman Y., Luo H., Fu W., and Furukawa K. (1997) Activation of NF-kappaB protects hippocampal neurons against oxidative stress-induced apoptosis: evidence for induction of manganese superoxide dismutase and suppression of peroxynitrite production and protein tyrosine nitration.J. Neurosci. Res. 49, 681–697.

    Article  PubMed  CAS  Google Scholar 

  • May P. C., Gitter B. D., Waters D. C., Simmons L. K., Becker G. W., Small J. S., et al. (1992) β-Amyloid peptide in vitro toxicity: lot-to-lot variability.Neurobiol. Aging 13, 605–607.

    Article  PubMed  CAS  Google Scholar 

  • Payne R. M. and Strauss A. W. (1994) Developmental expression of sarcomeric and ubiquitous mitochondrial creatine kinase is tissue-specific.Biochim. Biophys. Acta. 1219, 33–38.

    PubMed  CAS  Google Scholar 

  • Pike C. J., Burdick D., Walencewicz A. J., Glabe C. G., and Cotman C. W. (1993) Neurodegeneration induced by β-amyloid peptides in vitro: the role of peptide assembly state.J. Neurosci. 13, 1676–1687

    PubMed  CAS  Google Scholar 

  • Pike C. J., Ramezan-Arab N., and Cotman C. W. (1997) β-Amyloid neurotoxicity in vitro: evidence of oxidative stress but not protection by antioxidants.J. Neurochem. 69, 1601–1611.

    Article  PubMed  CAS  Google Scholar 

  • Puttfarcken P. S., Manelli A. M., Neilly J., and Frail D. E. (1996) Inhibition of age-induced β-amyloid neurotoxicity in rat hippocampal cells.Exp. Neurol. 138, 73–81.

    Article  Google Scholar 

  • Roher A. E., Palmer K. C., Yurewicz E. C., Ball M. J., and Greenberg B. D. (1993) Morphological and biochemical analyses of amyloid plague core proteins purified from Alzheimer disease tissue.J. Neurochem. 61, 1916–1926.

    Article  PubMed  CAS  Google Scholar 

  • Sagara Y., Dargusch R., Klier F. G., Schubert D., and Behl C. (1996) Increased antioxidant enzyme activity in amyloid beta protein-resistant cells.J. Neurosci. 16, 497–505.

    Google Scholar 

  • Schubert D., Behl C., Lesley R., Brack A., Gargusch R., Sagara Y., et al. (1995) Amyloid peptides are toxic via a common oxidative mechanism.Proc. Natl. Acad. Sci. USA 92, 1989–1993.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe D. J. (1996) Amyloid β-protein and the genetics of Alzheimer’s disease.J. Biol. Chem. 271, 18,295–18,298.

    Google Scholar 

  • Shearman M. S., Ragan C. I., and Iversen L. L. (1994) Inhibition of PC12 cell redox activity is a specific, early indicator of the mechanism of β-amyloid-mediated cell death.Proc. Natl. Acad. Sci. USA 91, 1470–1474.

    Article  PubMed  CAS  Google Scholar 

  • Shearman M. S., Hawtin S. R., and Tailor V. J. (1995) The intracellular component of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction is specifically inhibited by beta-amyloid peptides.J. Neurochem. 65, 218–227.

    Article  PubMed  CAS  Google Scholar 

  • Takashima A., Yamaguchi H., Noguchi K., Michel G., Ishiguro K., Sato K., et al. (1995) Amyloid beta prptide induces cytoplasmic accumulation of amyloid protein precursor via tau protein kinase 1/glycogen synthase kinase-3 beta in rat hippocampal neurons.Neurosci. Lett. 198, 83–86.

    Article  PubMed  CAS  Google Scholar 

  • Thomas C., Carr A. C., and Winterbourn C. C. (1994) Free radical inactivation of rabbit muscle creatine kinase: catalysis by physiological and hydrolyzed ICRF-187 (ICRF-198) iron chelates.Free Radical Res. 21, 387–397.

    Article  CAS  Google Scholar 

  • Ueda K., Shinohara S., Yagami T., Asakura K., and Kawasaki K. (1997) Amyloid β protein potentiates Ca2+ influx through L-type voltage-sensitive Ca2+ channels: a possible involvement of free radicals.J. Neurochem. 68, 265–271.

    Article  PubMed  CAS  Google Scholar 

  • Wallimann T., Schlosser T., and Eppenberger H. M. (1984) Function of M-line-bound creatine kinase as intramyofibrillar ATP regenerator and the receiving end of the phosphorylcreatine shuttle in muscle.J. Biol. Chem. 259, 5238–5246.

    PubMed  CAS  Google Scholar 

  • Wallimann T., Walzthony D., Wegmann G., Moser H., Eppenberger H. M., and Barrantes F. J. (1985) Subcellular localization of creatine kinase in Torpedo electrocytes: association with acetylcholine receptor-rich membranes.J. Cell. Biol. 100, 1063–1072.

    Article  PubMed  CAS  Google Scholar 

  • Wujek J. R., Dority M. D., Frederickson R. C. A., and Brunden K. R. (1996) Deposits of Aβ fibrils are not toxic to cortical and hippocampal neurons in vitro.Neurobiol. Aging 17, 107–113.

    Article  Google Scholar 

  • Yan S. D., Chen X., Fu J., Chen M., Zhu H., Roher A., et al. (1996) RAGE and amylois-β peptide neurotoxicity in Alzheimer’s disease.Nature 382, 685–691.

    Article  Google Scholar 

  • Yankner B. A., Duffy L. K., and Kirschner D. A. (1990) Neurotrophic and neurotoxic effects of amyloid β protein: reversal by tachykinin neuropeptides.Science 250, 279.

    Article  PubMed  CAS  Google Scholar 

  • Zang Z., Rydel R. E., Drzewiecki G. J., Fuson K., Wright S., Wogulis M., et al. (1996) Amyloid β-mediated oxidative and metabolic stress in rat cortical neurons: no direct evidence for a role for H2O2 generation.J. Neurochem. 67, 1595–1606.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aksenov, M.Y., Aksenova, M.V., Markesbery, W.R. et al. Amyloid β-peptide(1–40)-mediated oxidative stress in cultured hippocampal neurons. J Mol Neurosci 10, 181–192 (1998). https://doi.org/10.1007/BF02761773

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02761773

Index Entries

Navigation