Israel Journal of Mathematics

, Volume 84, Issue 1–2, pp 17–31 | Cite as

Non-tame automorphisms of extensions of periodic groups

  • Yoav Moriah
  • Vladimir Shpilrain


LetF be a free group andRF a characteristic subgroup. Automorphisms ofF/R which are induced by automorphisms ofF are called tame. In this paper we use theN-torsion invariant discovered by the first author and M. Lustig [LM] to show the existence of non-tame automorphisms of free central extensions and free nilpotent extensions of Burnside groups.


Group Ring Commutator Subgroup Invariant Subgroup Characteristic Subgroup Lower Central Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A] S. Andreadakis,On the automorphisms of free groups and free nilpotent groups, Proc. London Math. Soc. (3)15 (1965), 239–268.MATHCrossRefMathSciNetGoogle Scholar
  2. [B] S. Bachmuth,Induced automorphisms of free groups and free metabelian groups, Trans. Amer. Math. Soc.122 (1966), 1–17.MATHCrossRefMathSciNetGoogle Scholar
  3. [BG] R. M. Bryant and C. K. Gupta,Characteristic subgroups of free centre-by-metabelian groups, J. London Math. Soc. (2)29 (1984), 435–440.MATHCrossRefMathSciNetGoogle Scholar
  4. [BGLM] R. M. Bryant, C. K. Gupta, F. Levin and H. Y. Mochizuki,Non-tame automorphisms of free nilpotent groups, Commun. Algebra18 (1990), 3619–3631.MATHCrossRefMathSciNetGoogle Scholar
  5. [BFM] S. Bachmuth, E. Formanek and H. Y. Mochizuki,IA-automorphisms of certain two-generator torsion-free groups, J. Algebra40 (1976), 19–30.MATHCrossRefMathSciNetGoogle Scholar
  6. [BM1] S. Bachmuth and H. Y. Mochizuki,The non-finite generation of Aut(G),G free metabelian of rank 3, Trans. Amer. Math. Soc.270 (1982), 693–700.MATHCrossRefMathSciNetGoogle Scholar
  7. [BM2] S. Bachmuth and H. Y. Mochizuki, Aut(F)→Aut(F/F") is surjective for free group F of rank ≥4, Trans. Amer. Math. Soc.292 (1985), 81–101.MATHCrossRefMathSciNetGoogle Scholar
  8. [C] O. Chein,IA automorphisms of free and free metabelian groups, Comm. Pure Appl. Math.21 (1968), 605–629.MATHCrossRefMathSciNetGoogle Scholar
  9. [CFL] K. T. Chen, R. H. Fox and R. C. Lyndon,Free differential calculus. IV. The quotient groups of the lower central series, Ann. Math. (2)68 (1958), 81–95.MathSciNetGoogle Scholar
  10. [F] R. H. Fox,Free differential calculus. I. Derivation in the free group ring, Ann. Math. (2)57 (1953), 547–560.CrossRefGoogle Scholar
  11. [Gr] K. W. Gruenberg,Cohomological topics in group theory, Lecture Notes in Math., Vol. 143, Springer-Verlag, Berlin, 1970.MATHGoogle Scholar
  12. [GG] C. K. Gupta and N. D. Gupta,Generalized Magnus embeddings and some applications, Math. Z.160 (1978), 75–87.MATHCrossRefMathSciNetGoogle Scholar
  13. [GL] C. K. Gupta and F. Levin,Tame range of automorphism groups of free polynilpotent groups, Commun. Algebra19 (1991), 2497–2500.MATHCrossRefMathSciNetGoogle Scholar
  14. [LM] M. Lustig and Y. Moriah,Generating systems of groups and Reidemeister-Whitehead torsion, J. Algebra, to appear.Google Scholar
  15. [LMR] M. Lustig, Y. Moriah and G. Rosenberger,Automorphisms of Fuchsian groups and their lift to free groups, Can. J. Math. 1XLI (1989), 123–131.MathSciNetGoogle Scholar
  16. [LS] R. Lyndon and P. Schupp,Combinatorial Group Theory, Ergebnisse der Mathematik89, Springer-Verlag, Berlin, 1977.MATHGoogle Scholar
  17. [N] J. Nielsen,Die Isomorphismengruppe der freien Gruppen, Math. Ann91 (1924), 169–209.CrossRefMathSciNetMATHGoogle Scholar
  18. [Se] S.K. Sehgal,Units in commutative integral group rings, Math. J. Okayama Univ.14 (1970), 135–138.MATHMathSciNetGoogle Scholar
  19. [Sh1] V. Shpilrain,On the centers of free central extensions of some groups, inGroups—Canberra 1989 (L. Kovacs, ed.), Lecture Notes in Math.1456, Springer-Verlag, Berlin, 1990, pp. 181–184.CrossRefGoogle Scholar
  20. [Sh2] V. Shpilrain,Automorphisms of F/R' groups, Int. J. Algebra Comput.1 (1991), 177–184.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© The Magnes Press 1993

Authors and Affiliations

  • Yoav Moriah
    • 1
  • Vladimir Shpilrain
    • 1
  1. 1.Department of MathematicsTechnion-Israel Institute of TechnologyHaifaIsrael

Personalised recommendations