Israel Journal of Mathematics

, Volume 91, Issue 1–3, pp 419–428 | Cite as

Nombres normaux, entropie, translations

  • Bernard Host


Given a measure μ on the circle, we study the relations between the entropy of the multiplication by an integerp and the conservativity for the translations by thep-acid rational numbers. We get a criterium for μ-almost every point to be normal in a basisq prime top, and generalizations of the result of D. Rudolph about measures which are invariant by multiplication byp andq.


Riesz Product Marseille Cedex Petite Modification Singular Transformation Independant Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Brown, W. Moran and C. Pearce,Riesz products and normal numbers, Journal of the London Mathematical Society32 (1985), 12–18.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    J. Feldman and M. Smorodinsky,Normal numbers from independant processes, Ergodic Theory and Dynamical Systems12 (1992), 707–712.MATHMathSciNetGoogle Scholar
  3. [3]
    J. Feldman,A generalization of a result of Lyons about measures in [0,1], Israel Journal of Mathematics81 (1993), 281–287.MATHMathSciNetGoogle Scholar
  4. [4]
    B. Host, J. F. Méla and F. Parreau,Non singular transformations and spectral analysis of measures, Bulletin de la Société Mathématique de France119 (1991), 33–90.MATHGoogle Scholar
  5. [5]
    A. Johnson,Measures on the circle invariant under multiplication by a nonlacunary subgroup of the integers, Israel Journal of Mathematics77 (1992), 211–240.MATHMathSciNetGoogle Scholar
  6. [6]
    K. Petersen,Ergodic Theory, Cambridge Studies in Advanced Mathematics, 2, Cambridge University Press, Cambridge, 1983.MATHGoogle Scholar
  7. [7]
    D. J. Rudolph,×2 and ×3 invariant measures and entropy, Ergodic Theory and Dynamical Systems10 (1990), 395–406.MATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    W. M. Schmidt,On normal numbers, Pacific Journal of Mathematics10 (1960), 661–672.MATHMathSciNetGoogle Scholar

Copyright information

© The Magnes Press 1995

Authors and Affiliations

  • Bernard Host
    • 1
  1. 1.Laboratoire de Mathématiques discrètesMarseille cedexFrance

Personalised recommendations