Advertisement

Israel Journal of Mathematics

, Volume 91, Issue 1–3, pp 249–251 | Cite as

Realizability of the torus and the projective plane in ℝ4

  • Ulrich Brehm
  • Göran Schild
Article

Abstract

We show that every triangulation of the projective plane or the torus is isomorphic to a subcomplex of the boundary complex of a simplicial 5-dimensional convex polytope and thus linearly embeddable in ℝ4.

Keywords

Projective Plane Simplicial Complex ISRAEL Journal Boundary Complex Convex Polytope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Barnette,All triangulations of the projective plane are geometrically realizable in E 4, Israel Journal of Mathematics44 (1983), 75–87.MATHMathSciNetGoogle Scholar
  2. [2]
    P.J. Giblin,Graphs, Surfaces and Homology, Mathematics Series, Chapman and Hall, New York, 1977.MATHGoogle Scholar
  3. [3]
    H. Sachs,Einführung in die Theorie der endlichen Graphen, Volume II, Teubner Verlagsgesellschaft, Leipzig, 1972.MATHGoogle Scholar
  4. [4]
    G. Schild,Some minimal nonembeddable complexes, Topology and its Applications53 (1993), 177–185.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    E. Steinitz,Polyeder und Raumeinteilungen, inEnzykl. der math. Wiss. 3 (Geometrie), Volume 3AB12, Teubner Verlagsgesellschaft, Leipzig, 1922, pp. 1–139.Google Scholar

Copyright information

© The Magnes Press 1995

Authors and Affiliations

  • Ulrich Brehm
    • 1
  • Göran Schild
    • 2
  1. 1.Institute of GeometryTechnical University of DresdenDresdenGermany
  2. 2.German National Research Center for Computer Science (GMD)Sankt AugustinGermany

Personalised recommendations