Israel Journal of Mathematics

, Volume 50, Issue 3, pp 231–263 | Cite as

Stability for abstract linear functional differential equations

  • G. Di Blasio
  • K. Kunisch
  • E. Sinestrari


A class of parabolic partial integrodifferential equations with discrete and distributed delays in the spatial derivatives of maximum order is considered. After the study of well posedness of the initial value problem the asymptotic behaviour of the solutions is investigated through the spectral properties of the infinitesimal generator of the solution semigroup.


Asymptotic Behaviour Implicit Function Theorem Functional Differential Equation Infinitesimal Generator Interpolation Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Ardito and P. Ricciardi,Existence and regularity for linear delay partial differential equations, Nonlinear Analysis TMA4 (1980), 411–414.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    A. Ardito and P. Vernole,Existence and regularity for delay differential equations in interpolation spaces, Boll. Un. Mat. Ital. An. Funz. Appl.1 (1982), 39–49.MATHMathSciNetGoogle Scholar
  3. 3.
    M. Artola,Sur les perturbations des équations d’évolution: application à des problèmes de retard, Ann. Sci. Ec. Norm. Sup.2 (1969), 137–253.MATHMathSciNetGoogle Scholar
  4. 4.
    M. Artola,Sur une équation d’évolution du premier ordre à argument retardé, C. R. Acad. Sci. Paris268 (1969), 1540–1543.MATHMathSciNetGoogle Scholar
  5. 5.
    P. Butzer and H. Berens,Semigroups of Operators and Approximation, Springer-Verlag, Berlin, 1967.Google Scholar
  6. 6.
    E. B. Davies,One-Parameter Semigroups, Academic Press, London, 1980.MATHGoogle Scholar
  7. 7.
    G. Di Blasio,The linear-quadratic optimal control problem for delay differential equations, Rend. Acc. Naz. Lincei71 (1981), 156–161.MATHGoogle Scholar
  8. 8.
    G. Di Blasio, K. Kunisch and E. Sinestrari,L 2-regularity for parabolic integrodifferential equations with delay in the highest order derivatives, J. Math. Anal. Appl.,102 (1984), 38–57.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    H. O. Fattorini,The Cauchy Problem, Addison-Wesley, Reading, 1983.Google Scholar
  10. 10.
    P. Grisvard,Spazi di tracce e applicazioni, Rend. Mat.5 (1972), 657–729.MathSciNetGoogle Scholar
  11. 11.
    J. Hale,Theory of Functional Differential Equations, Springer-Verlag, New York, 1977.MATHGoogle Scholar
  12. 12.
    K. Kunisch and W. Schappacher,Necessary conditions for partial differential equations with delay to generate C o-semigroups, J. Differential Equations50 (1983), 49–79.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    R. Lattes and J. L. Lions,Méthode de quasi-réversibilité et applications, Dunod, Paris, 1967.MATHGoogle Scholar
  14. 14.
    J. L. Lions and E. Magenes,Problèmes aux limites non homogènes et applications, Dunod, Paris, 1968.MATHGoogle Scholar
  15. 15.
    S. Nakagiri,On the fundamental solution of delay-differential equations in Banach spaces, J. Differential Equations41 (1981), 349–368.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    A. Pazy,On the differentiability and compactness of semi-groups of linear operators, J. Math. Mech.17 (1968), 1131–1141.MATHMathSciNetGoogle Scholar
  17. 17.
    C. Travis and G. Webb,Partial differential equations with deviating arguments in the time variable, J. Math. Anal. Appl.56 (1976), 397–409.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    C. Travis and G. Webb,Existence, stability and compactness in the α-norm for partial functional differential equations, Trans. Am. Math. Soc.240 (1978), 129–143.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    R. Triggiani,On the stabilizability problem in Banach space, J. Math. Anal. Appl.52 (1975), 383–403.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Hebrew University 1985

Authors and Affiliations

  • G. Di Blasio
    • 1
  • K. Kunisch
    • 2
  • E. Sinestrari
    • 1
  1. 1.Dipartimento di MatematicaUniversita di Roma IRomaItaly
  2. 2.Institut für MathematikTechnische Universität GrazGrazAustria

Personalised recommendations