Israel Journal of Mathematics

, Volume 93, Issue 1, pp 373–385 | Cite as

Geodesic spheres and two-point homogeneous spaces

  • Jürgen Berndt
  • Friedbert Prüfer
  • Lieven Vanhecke


In the Osserman conjecture and in the isoparametric conjecture it is stated that two-point homogeneous spaces may be characterized via the constancy of the eigenvalues of the Jacobi operator or the shape operator of geodesic spheres, respectively. These conjectures remain open, but in this paper we give complete positive results for similar statements about other symmetric endomorphism fields on small geodesic spheres. In addition, we derive more characteristic properties for this class of spaces by using other properties of small geodesic spheres. In particular, we study Riemannian manifolds with (curvature) homogeneous geodesic spheres.


Riemannian Manifold Shape Operator Jacobi Operator Einstein Space Geodesic Sphere 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BV] J. Berndt and L. Vanhecke,Two natural generalizations of locally symmetric spaces, Differential Geometry and Its Applications2 (1992), 57–80.MATHCrossRefMathSciNetGoogle Scholar
  2. [Be] A. L. Besse,Manifolds all of whose geodesics are closed, Ergebnisse der Mathematik und ihrer Grenzgebiete93, Springer, Berlin, Heidelberg, New York, 1978.MATHGoogle Scholar
  3. [CV] B. Y. Chen and L. Vanhecke,Differential geometry of geodesic spheres, Journal für die reine und angewandte Mathematik325 (1981), 28–67.MATHMathSciNetCrossRefGoogle Scholar
  4. [Ch1] Q. S. Chi,A curvature characterization of certain locally rank-one symmetric spaces, Journal of Differential Geometry28 (1988), 187–202.MATHMathSciNetGoogle Scholar
  5. [Ch2] Q. S. Chi,Quaternionic Kaehler manifolds and a curvature characterization of two-point homogeneous spaces, Illinois Journal of Mathematics35 (1991), 408–418.MATHMathSciNetGoogle Scholar
  6. [Ch3] Q. S. Chi,Curvature characterization and classification of rank-one symmetric spaces, Pacific Journal of Mathematics150 (1991), 31–42.MATHMathSciNetGoogle Scholar
  7. [DR] E. Damek and F. Ricci,A class of nonsymmetric harmonic Riemannian spaces, Bulletin of the American Mathematical Society, New Series27 (1992), 139–142.MATHMathSciNetGoogle Scholar
  8. [DK] D. M. DeTurck and J. L. Kazdan,Some regularity theorems in Riemannian geometry, Annales Scientifiques de l’École Normale Supérieure14 (1981), 249–260.MATHMathSciNetGoogle Scholar
  9. [DV] M. Djorić and L. Vanhecke,Almost Hermitian geometry, geodesic spheres and symmetries, Mathematical Journal of Okayama University32 (1990), 187–206.MathSciNetMATHGoogle Scholar
  10. [Gi] P. B. Gilkey,Manifolds whose higher odd order curvature operators have constant eigenvalues at the basepoint, The Journal of Geometric Analysis2 (1992), 151–156.MATHMathSciNetGoogle Scholar
  11. [GSV] P. B. Gilkey, A. Swann and L. Vanhecke,Isoparametric geodesic spheres and a conjecture of Osserman concerning the Jacobi operator, The Quarterly Journal of Mathematics. Oxford, to appear.Google Scholar
  12. [Gr] A. Gray,Tubes, Addison-Wesley, Reading, 1990.MATHGoogle Scholar
  13. [KTV1] O. Kowalski, F. Tricerri and L. Vanhecke,Curvature homogeneous Riemannian manifolds, Journal de Mathématiques Pures et Appliquées IX. Sér.71 (1992), 471–501.MATHMathSciNetGoogle Scholar
  14. [KTV2] O. Kowalski, F. Tricerri and L. Vanhecke,Curvature homogeneous spaces with a solvable Lie group as homogeneous model, Journal of the Mathematical Society of Japan44 (1992), 461–484.MATHMathSciNetCrossRefGoogle Scholar
  15. [KV1] O. Kowalski and L. Vanhecke,Operateurs différentiels invariants et symétries géodésiques préservant le volume, Comptes Rendus des Séances de l'Academie des Sciences. Sér. I. Math.296 (1983), 1001–1003.MATHMathSciNetGoogle Scholar
  16. [KV2] O. Kowalski and L. Vanhecke,Riemannian manifolds with homogeneous geodesics, Unione Matematica Italiana. Bollettino. B. Serie VII5 (1991), 189–246.MATHMathSciNetGoogle Scholar
  17. [Os] R. Osserman,Curvature in the eighties, The American Mathematical Monthly97 (1990), 731–756.MATHCrossRefMathSciNetGoogle Scholar
  18. [RWW] H. S. Ruse, A. G. Walker and T. J. Willmore,Harmonic Spaces, Cremonese, Roma, 1961.MATHGoogle Scholar
  19. [Si] I. M. Singer,Infinitesimally homogeneous spaces, Communications on Pure and Applied Mathematics13 (1960), 685–697.MATHCrossRefMathSciNetGoogle Scholar
  20. [Sz1] Z. I. Szabó,The Lichnerowicz conjecture on harmonic manifolds, Journal of Differential Geometry31 (1990), 1–28.MATHMathSciNetGoogle Scholar
  21. [Sz2] Z. I. Szabó,A simple topological proof for the symmetry of 2 point homogeneous spaces, Inventiones mathematicae106 (1991), 61–64.MATHCrossRefMathSciNetGoogle Scholar
  22. [Sz3] Z. I. Szabó,Spectral geometry for operator families on Riemannian manifolds, Proceedings of Symposia in Pure Mathematics54 (1993), 615–665.Google Scholar
  23. [TV1] F. Tricerri and L. Vanhecke,Curvature homogeneous Riemannian manifolds, Annales Scientifiques de l'École Normale Supérieure22 (1989), 535–554.MATHMathSciNetGoogle Scholar
  24. [TV2] F. Tricerri and L. Vanhecke,Geometry of a class of non-symmetric harmonic manifolds, inDifferential Geometry and Its Applications, Proc. Conf. Opava (Czechoslovakia), August 24–28, 1992, Silesian University, Opava, 1993, pp. 415–426.Google Scholar
  25. [V1] L. Vanhecke,Some solved and unsolved problems about harmonic and commutative spaces, Bulletin de la Société Mathématique de Belgique. Série B34 (1982), 1–24.MATHMathSciNetGoogle Scholar
  26. [V2] L. Vanhecke,Geometry in normal and tubular neighborhoods, Rendiconti del Seminario della Facoltà di Scienze della Università di Cagliari, Suppl. al Vol.58 (1988), 73–176.MathSciNetGoogle Scholar
  27. [VW] L. Vanhecke and T. J. Willmore,Interactions of tubes and spheres, Mathematische Annalen263 (1983), 31–42.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© The magnes press 1996

Authors and Affiliations

  • Jürgen Berndt
    • 1
  • Friedbert Prüfer
    • 2
  • Lieven Vanhecke
    • 3
  1. 1.Mathematisches InstitutUniversität zu KölnKölnGermany
  2. 2.Fachbereich Mathematik/InformatikUniversität LeipzigLeipzigGermany
  3. 3.Department of MathematicsKatholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations