Israel Journal of Mathematics

, Volume 44, Issue 3, pp 243–261 | Cite as

Strong liftings with application to measurable cross sections in locally compact groups

  • Joseph Kupka


There are two principal theorems. The adjustment theorem asserts that a lifting may be changed on a set of measure zero so as to become slightly stronger. In conjunction with the standard lifting theorem, it yields generalizations (with shorter proofs) of a number of known results in the theory of strong liftings. It also inspires a characterization of strong liftings, when the measure is regular, by the fact that they induce upon every open set an artificial “closure” of that set which differs from it by a set of measure zero. The projection theorem asserts that, in the presence of a strict disintegration, a strong lifting may be transferred or “projected” from one topological measure space onto another. In conjunction with Losert's example, it yields regular Borel, measures, carried on compact Hausdorff spaces of arbitrarily large weight, which everywhere fail to have the strong lifting property. It also provides the final link needed to obtained, with no separability assumptions, a measurable cross section (or right inverse) for the canonical map Ω:GG/H, whereG is an arbitrary locally compact group, and whereH is an arbitrary closed subgroup ofG.


Measure Space Compact Group Inverse Image Measurable Cross Section Compact Hausdorff Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Bourbaki,Intégration, Chaps. VII and VIII Act. Sci. Ind. no. 1306, Hermann, Paris, 1963.Google Scholar
  2. 2.
    F. Bruhat,Sur les représentations induites des groupes de Lie, Bull. Soc. Math. France84 (1956), 97–205.MATHMathSciNetGoogle Scholar
  3. 3.
    N. Dinculeanu,Vector Measures, Pergamon Press, Oxford, 1967.Google Scholar
  4. 4.
    N. Dunford and J. T. Schwartz,Linear Operators, I: General Theory, Pure and Appl. Math., Vol. 7, Interscience, New York, 1958.MATHGoogle Scholar
  5. 5.
    B. Eifrig, Ein nicht-standard-Beweis für die Existenz eines starken Liftungs in ,−α inContributions to Nonstandard Analysis (W. A. J. Luxemburg and A. Robinson, eds.), North-Holland Publ. Co., Amsterdam, 1972, pp. 81–83.Google Scholar
  6. 6.
    J. Feldman and F. P. Greenleaf,Existence of Borel, transversals in groups, Pac. J. Math.25 (1968), 455–461.MATHMathSciNetGoogle Scholar
  7. 7.
    D. Fremlin,On two theorems of Mokobodzki, Note of 23.6.77.Google Scholar
  8. 8.
    D. Fremlin,Losert's example, Note of 18.9.79.Google Scholar
  9. 9.
    S. Graf,On the existence of strong liftings in second countable topological spaces, Pac. J. Math.58 (1975), 419–426.MATHMathSciNetGoogle Scholar
  10. 10.
    S. Graf,A measurable selection theorem for compact-valued maps, Manuscr. Math.27 (1979), 341–352.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    P. Green,The structure of imprimitivity algebras, J. Funct. Anal.36 (1980), 88–104.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    A. Ionescu Tulcea,Sur le relèvement fort et la désintégration des measures, C. R. Acad. Sci. Paris (A)262 (1966), 617–618.MATHMathSciNetGoogle Scholar
  13. 13.
    C. Ionescu Tulcea,Sur certains endomorphismes de LC c(Z, μ), C. R. Acad. Sci. Paris (A)261 (1965), 4961–4963.MATHMathSciNetGoogle Scholar
  14. 14.
    A. Ionescu Tulcea and C. Ionescu Tulcea,On the lifting property, J. Math. Anal. Appl.3 (1961), 537–546.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    A. Ionescu Tulcea and C. Ionescu Tulcea,On the existence of a lifting commuting with the left translations of an arbitrary locally compact group, Proc. 5th Berkeley Sympos, Vol. II, part 1, University of California Press, Berkeley, 1967, pp. 63–97.Google Scholar
  16. 16.
    A. Ionescu Tulcea and C. Ionescu Tulcea,Topics in the Theory of Lifting, Ergebnisse der Mathematik, Vol. 48, Springer-Verlag, Berlin and New York, 1969.MATHGoogle Scholar
  17. 17.
    R. A. Johnson,On product measures and Fubini's theorem in locally compact spaces, Trans. Am. Math. Soc.123 (1966), 112–129.MATHCrossRefGoogle Scholar
  18. 18.
    A. Kleppner,Intertwining forms for summable induced representations, Trans. Am. Math. Soc.112 (1964), 164–183.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    J. Kupka,L p,q spaces, Dissertationes Mathematicae, Vol. 164, Warsaw, 1980.Google Scholar
  20. 20.
    V. Losert,A measure space without the strong lifting property, Math. Ann.239 (1979), 119–128.MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    V. Losert,A counterexample on measurable selections and strong lifting, Measure Theory Oberwolfach 1979, Lecture Notes in Math, Vol. 794, Springer-Verlag, Berlin and New York, 1980, pp. 153–159.CrossRefGoogle Scholar
  22. 22.
    D. Maharam,On a theorem of von Neumann, Proc. Am. Math. Soc.9 (1958), 987–994.CrossRefMathSciNetGoogle Scholar
  23. 23.
    J. von Neumann,Algebraische Repräsentanten der Funktionen bis auf eine Menge vom Masse Null, J. Reine Angew. Math.165 (1931), 109–115.MATHGoogle Scholar
  24. 24.
    J. von Neumann and M. H. Stone,The determination of representative elements in the residual classes of a Boolean algebra, Fund. Math.25 (1935), 353–376.MATHGoogle Scholar
  25. 25.
    M. A. Rieffel,On extensions of locally compact groups, Am. J. Math.88 (1966), 871–880.MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    M. A. Rieffel,Induced Banach representations of Banach algebras and locally compact groups, J. Funct. Anal.1 (1967), 443–491.MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    M. Talagrand,Non-existence de certains sections measurables et contre-examples en theorie du relèvement, Measure Theory Oberwolfach 1979, Lecture Notes in Math., Vol. 794, Springer-Verlag, Berlin and New York, 1980, pp. 166–175.CrossRefGoogle Scholar
  28. 28.
    T. Traynor,An elementary proof of the lifting theorem, Pac. J. Math.53 (1974), 267–272.MATHMathSciNetGoogle Scholar
  29. 29.
    D. H. Wagner,Survey of measurable selection theorems, SIAM J. Control Optim.15 (1977), 859–903.MATHCrossRefGoogle Scholar
  30. 30.
    D. H. Wagner,Survey of measurable selection theorems: an update, Measure Theory Oberwolfach 1979, Lecture Notes in Math., Vol. 794, Springer-Verlag, Berlin and New York, 1980, pp. 176–219.CrossRefGoogle Scholar

Copyright information

© Hebrew University 1983

Authors and Affiliations

  • Joseph Kupka
    • 1
  1. 1.Department of MathematicsMonash UniversityClaytonAustralia

Personalised recommendations