Israel Journal of Mathematics

, Volume 101, Issue 1, pp 289–322 | Cite as

Calderón constants of finite-dimensional couples



The Calderón constant æ(\(\bar X\)) is a numerical invariant of finite-dimensional Banach couple\(\bar X = (X_0 ,X_1 )\) measuring its interpolation property with respect to linear operators acting in\(\bar X\). In the paper we prove the duality relation æ(\(\bar X\))≈ æ(\(\bar X\) *)and calculate the asymptotic behavior of æ(\(\bar X\)) as dim\(\bar X \to \infty \) for a few “classical” Banach couples.


Banach Space Linear Operator Bounded Linear Operator Banach Lattice Absolute Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B] T. Bychkova,Couples without C-properties, inInvestigations in the Theory of Functions of Several Variables, Yaroslavl, 1990, pp. 48–51 (in Russian).Google Scholar
  2. [BK] Y. Brudnyi and N. Krugljak,Interpolation Functors and Interpolation Spaces, North-Holland, Amsterdam-New York-Oxford-Tokyo, 1992, 718 pp.Google Scholar
  3. [BL] J. Bergh and J. Löfström,Interpolation Spaces. An Introduction, Grundlehren der Mathematishe Wissenschaften223, Springer, Berlin-Heidelberg-New York, 1976, pp. 1–202MATHGoogle Scholar
  4. [BS] Y. Brudnyi and A. Shteinberg,Calderón couples of Lipschitz spaces, Journal of Functional Analysis131 (1995), 459–498.MATHCrossRefMathSciNetGoogle Scholar
  5. [C] A. P. Calderón,Spaces between L 1 and L and the theorems of Marcinkiewicz, Studia Mathematica26 (1966), 273–299.MATHMathSciNetGoogle Scholar
  6. [Cw] M. Cwikel,Monotonicity properties of interpolation spaces II, Arkiv für Matematik19 (1981), 123–136.MATHCrossRefMathSciNetGoogle Scholar
  7. [CM] M. Cwikel and M. Mastylo,Interpolation spaces between the Lipschitz class and the space of continuous functions, Proceedings of the American Mathematical Society124 (1996), 1103–1110.MATHCrossRefMathSciNetGoogle Scholar
  8. [CN] M. Cwikel and P. Nilsson,Interpolation of weighted Banach lattices, Memoirs of the American Mathematical Society (to appear).Google Scholar
  9. [Ka] N. J. Kalton,Calderón couples of rearrangement invariant spaces, Studia Mathematica106 (1993), 233–277.MATHMathSciNetGoogle Scholar
  10. [Kr] J.-L. Krivine,Sur la complexification des opérateurs de L dans L 1, Comptes Rendus de l’Académie des Sciences, Paris, Série A284 (1977), 377–379.MATHMathSciNetGoogle Scholar
  11. [M] B. S. Mitiagin,An interpolation theorem for modular spaces, Matematicheskii Sbornik66 (1965), 473–482 (in Russian).Google Scholar
  12. [P] J. Peetre,Exact interpolation theorems for Lipschitz continuous functions, Ricerche di Matematica18 (1969), 239–259.MATHMathSciNetGoogle Scholar
  13. [Se] A. Sedaev, Description of interpolation spaces for the couple\((L_{\alpha _0 }^p ,L_{\alpha _1 }^p )\) and some related problems, Doklady Akademii Nauk SSSR209 (1973), 799–800 (in Russian).MathSciNetGoogle Scholar
  14. [Sp] G. Sparr,Interpolation of weighted L p-spaces, Studia Mathematica62 (1978), 229–271.MATHMathSciNetGoogle Scholar
  15. [SS] A. A. Sedaev and E. M. Semenov,On the possibility of describing interpolation spaces in terms of Peetre’s K-method, Optimizaciya4 (1971), 98–114 (in Russian).MathSciNetGoogle Scholar

Copyright information

© Hebrew University 1997

Authors and Affiliations

  1. 1.Department of MathematicsTechnion-Israel Institute of TechnologyHaifaIsrael

Personalised recommendations