Skip to main content
Log in

Inducible gene expression systems inLactococcus lactis

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Lactococcus lactis is industrially important microorganism used in many dairy fermentations. Numerous genes and gene expression signals from this organism have now been identified and characterized. Recently, several naturally occurring, inducible gene-expression systems have also been described inL. lactis. The main features of these systems can be exploited to design genetically engineered expression cassettes for controlled production of various proteins and enzymes. Novel gene-expression systems inLactococcus have great potential for development of industrial cultures with desirable metabolic traits for a variety of bioprocessing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van Rooijen, R. J. and de Vos, W. M. (1990) Molecular cloning, transcriptional analysis, and nucleotide sequence oflacR, a gene encoding the repressor of the lactose phosphotransferase system ofLactococcus lactis.J. Biol. Chem. 265, 18,499–18,503.

    Google Scholar 

  2. Van Rooijen, R. J., van Schalkwijk, S., and de Vos, W. M. (1991) Molecular cloning, characterization, and nucleotide sequence of the tagatose 6-phosphate pathway gene cluster of the lactose operon ofLactococcus lactis.J. Biol. Chem. 266, 7176–7181.

    PubMed  Google Scholar 

  3. Renault, P., Gaillardin, C., and Heslot, H. (1989) Product of theLactococcus lactis required for malolactic fermentation is homologous to a family of positive regulators.J. Bacteriol. 171, 3108–3114.

    PubMed  CAS  Google Scholar 

  4. Stragier, P. and Patte, J. C. (1983) Regulation of diaminopimelate decarboxylase synthesis inEscherichia coli. III. Nucleotide sequence and regulation of thelysR gene.J. Mol. Biol. 168, 333–350.

    Article  PubMed  CAS  Google Scholar 

  5. Wek, R. C. and Hatfield, G. W. (1986) Nucleotide sequence andin vivo expression of theilvY andilvC genes inEscherichia coli K12.J. Biol. Chem. 261, 2441–2450.

    PubMed  CAS  Google Scholar 

  6. Chang, M., Hadero, A., and Crawford, I. P. (1989) Sequence of thePseudomonas aeruginosa trpI activator gene and relatedness oftrpI to other procaryotic regulatory genes.J. Bacteriol. 171, 172–183.

    PubMed  CAS  Google Scholar 

  7. Plamann, L. S. and Stauffer, G. V. (1987) Nucleotide sequence of theSalmonella typhimurium metR gene and themetR-metE control region.J. Bacteriol. 169, 3932–3937.

    PubMed  CAS  Google Scholar 

  8. Van Rooijen, R. J., and de Vos, W. M. (1992) Characterization ofLactococcus lactis lactose operon promoter: contribution of flanking sequences and LacR repressor to promoter activity.J. Bacteriol. 174, 2273–2280.

    PubMed  Google Scholar 

  9. Eaton, T. J., Shearman, C. A., and Gasson, M. J. (1993) The use of bacterial luciferase genes as reporter genes inLactococcus: regulation of theLactococcus lactis subsp.lactis lactose genes.J. Gen. Microbiol. 139, 1495–1501.

    PubMed  CAS  Google Scholar 

  10. Kuipers, O., Beerthuyzen, M. M., Deruyter, P. G. G. A., Luesink, E. J., and de Vos, W. M. (1995) Autoregulation of nisin biosynthesis inLactococcus lactis by signal transduction.J. Biol. Chem. 270, 27,299–27,304.

    CAS  Google Scholar 

  11. Kuipers, O. P., Beerthuyzen, M. M., Siezen, R. J., and de Vos, W. M. (1993) Characterization of the nisin gene clusternisABTCIPR ofLactococcus lactis. Requirement of expression of thenisA andnisI genes for development of immunity.Eur. J. Biochem. 216, 281–291.

    Article  PubMed  CAS  Google Scholar 

  12. de Ruyter, P. G. G. A., Kuipers, O. P., Beerthuyzen, M. M., van Alen-Boerrigter, I., and de Vos, W. M. (1996) Functional analysis of promoters in the nisin gene cluster ofLactococcus lactis.J. Bacteriol. 178, 3434–3439.

    PubMed  Google Scholar 

  13. de Ruyter, P. G. G. A., Kuipers, O. P., and de Vos, W. M. (1996) Controlled gene expression systems forLactococcus lactis with the food-grade inducer nisin.Appl. Environ. Microbiol. 62, 3362–3367.

    Google Scholar 

  14. de Ruyter, P. G. G. A., Kuipers, O. P., Bijl, L. C., and de Vos, W. M. (1996) Controlled gene expression inLactococcus lactis. Abstract H46 of the 5th Symposium on lactic Acid Bacteria: Genetics, Metabolism, and Applications. Federation of European Microbiological Sciences.

  15. Gasson, M. J. (1996) Lytic systems in lactic acid bacteria and their bacteriophages.Antonie van Leeuwenhoek 70, 147–159.

    Article  PubMed  CAS  Google Scholar 

  16. Payne, J., MacCormick, C. A., Griffin, H. G., and Gasson, M. J. (1996) Exploitation of a chromosomally integrated lactose operon for controlled gene expression inLactococcus lactis.FEMS Microbiol. Lett. 136, 19–24.

    Article  PubMed  CAS  Google Scholar 

  17. Luesink, E. J., Beerthuyzen, M. M. Marugg, J. D., Kuipers, O. P., and de Vos, W. M. (1996) Expression of the divergently transcribed sucrose genes fromLactococcus lactis is controlled by thesacR gene. Abstract H47 of the 5th Symposium on Lactic Acid Bacteria: Genetics, Metabolism, and Applications, Federation of European Microbiological Sciences.

  18. Marugg, J. D., Meijer, W., van Kranenburg, R., Laverman, P., Bruinenberg, P. G., and de Vos, W. M. (1995) Medium-dependent regulation of proteinase gene expression inLactococcus lactis: control of transcription initiation by specific dipeptides.J. Bacteriol. 177, 2982–2989.

    PubMed  CAS  Google Scholar 

  19. Marugg, J. D., van Kranenburg, R., Laverman, P., Rutten, G. A. M., and de Vos, W. M. (1996) Identical transcriptional control of the divergently transcribed prtP and prtM genes that are required for proteinase production inLactococcus lactis SK11.J. Bacteriol. 178, 1525–1531.

    PubMed  CAS  Google Scholar 

  20. Kok, J. (1996) Inducible gene expression and environmentally regulated genes in lactic acid bacteria.Antonie van Leeuwenhoek 70, 129–145.

    Article  PubMed  CAS  Google Scholar 

  21. Sanders, J. W., Leenhouts, K. J., Haandrikman, A. J., Venema, G., and Kok, J. (1995) Stress response inLactococcus lactis: Cloning, expression analysis, and mutation of the lactococcal superoxidase dismutase gene.J. Bacteriol. 177, 5254–5260.

    PubMed  CAS  Google Scholar 

  22. van Asseldonk, de Vos, W. M., and Simons, G. (1993) Cloning, nucleotide sequence, and regulatory analysis of theLactococcus lactis dnaJ gene.J. Bacteriol. 175, 1637–1644.

    PubMed  Google Scholar 

  23. Madsen, S. M., Vrang, A., and Israelsen, H. (1996) Engineering of a pH regulated promoter fromLactococcus lactis. Abstract H11 of the 5th Symposium on Lactic Acid Bacteria: Genetics, Metabolism, and Applications, Federation of European Microbiological Sciences.

  24. Sanders, J. W., Leenhouts, K., Venema, G., and Kok, J. (1996) Analysis of a chloride-inducible lactococcal promoter. Abstract H22 of the 5th Symposium on Lactic Acid Bacteria: Genetics, Metabolism, and Applications, Federation of European Microbiological Sciences.

  25. Leenhouts, K., Sanders, J. W., Kok, J., Tisminetsky, S., and Baralle, F. (1996) A new inducible expression system forLactococcus lactis, Abstract #E12 of the 5th Symposium on Lactic Acid Bacteria: Genetics, Metabolism, and Applications, Federation of European Microbiological Sciences.

  26. Madsen, M. and Nilsson, D. (1996) Purine regulated promoters inLactococcus lactis. Abstract H7 of the 5th Symposium on Lactic Acid Bacteria: Genetics, Metabolism, and Applications, Federation of European Microbiological Sciences.

  27. Kibenich, A. and Johansen, E. (1996) Food-grade expression of the θML3 lysin gene inLactococcus lactis. Abstract G4 of the 5th Symposium on Lactic Acid Bacteria: Genetics, Metabolism, and Applications, Federation of European Microbiological Sciences.

  28. Schofield, K. M., Wilson, P. W., Le Page, R. F. W., and Wells, J. M. (1996) Optimization of translation initiation inLactococcus lactis. Abstract H44 of the 5th Symposium on Lactic Acid Bacteria: Genetics, Metabolism, and Applications, Federation of European Microbiological Sciences.

  29. Wells, J. M., Wilson, P. W., Norton, P. A., Gasson, M. J., Le Page, R. W. F. (1993)Lactococcus lactis: high-level expression of tetanus toxin fragment C and protection against lethal challenge.Mol. Microbiol. 8, 1155–1162.

    Article  PubMed  CAS  Google Scholar 

  30. Wells, J. M., Wilson, P. W., Norton, P. A., and Le Page, R. W. F. (1993) A model system for the investigation of heterologous protein secretion pathways inLactococcus lactis.Appl. Environ. Microbiol. 59, 3954–3959.

    PubMed  CAS  Google Scholar 

  31. Steidler, L., Wells, J. M., Raeymaekers, A., Vandekerckhove, J., Fiers, W., and Remaut, E. (1995) Secretion of biologically active murine interleukin-2 byLactococcus lactis subsp.lactis.Appl. Environ. Microbiol. 61, 1627–1629.

    PubMed  CAS  Google Scholar 

  32. Davanloo, P., Rosenberg, A. H., Dunn, J. J., and Studier, W. (1984) Cloning and expression of the gene for bacteriophage T7 RNA polymerase.Proc. Natl. Acad. Sci. USA 81, 2035–2039.

    Article  PubMed  CAS  Google Scholar 

  33. Simon, D. and Chopin, A. (1988) Construction of a vector plasmid family and its use for molecular cloning inStreptococcus lactis.Biochimie 70, 559–566.

    Article  PubMed  CAS  Google Scholar 

  34. Halpern, J. L., Habig, W. H., Neale, E. A., and Stibitz, S. (1990) Cloning and expression of functional fragment C of tetanus toxin.Infect. Immunity 58, 1004–1009.

    CAS  Google Scholar 

  35. Maeda, S. and Gasson, M. J. (1986) Cloning, expression, and location of theStreptococcus lactis gene for phospho-β-D-galactosidase.J. Gen. Microbiol. 132, 331–340.

    PubMed  CAS  Google Scholar 

  36. Demolder, J., Fiers, W., and Contrears, R. (1992) Efficient synthesis of secreted murine interleukin-2 by Saccharomyces cerevisiae: influence of 3′-untraslated regions and codon usage.Gene 111, 207–213.

    Article  PubMed  CAS  Google Scholar 

  37. MacCormick, C. A., Griffin, H. G., and Gasson, M. J. (1995) Construction of a food-grade host/vector system forLactococcus lactis based on the lactose operon.FEMS Microbiol. Lett. 127, 1,2.

    Article  Google Scholar 

  38. Platteeuw, C., van Alen Boerrigter, Schalkwijk, S., and de Vos, W. M. (1996) Food-grade cloning and expression system forLactococcus lactis.Appl. Environ. Microbiol. 62, 1008–1013.

    PubMed  CAS  Google Scholar 

  39. Platteeuw, C. and de Vos, W. M. (1992) Location, characterization and expression of lytic enzymeencoding gene,lytA, ofLactococcus lactis bacteriophage_US3.Gene 118, 115–120.

    Article  PubMed  CAS  Google Scholar 

  40. Shearman, C., Underwood, H., Jury, K., and Gasson, M. (1989) Cloning and DNA sequence analysis of aLactococcus bacteriophage lysin gene.Mol. Gen. Genet. 218, 214–221.

    Article  PubMed  CAS  Google Scholar 

  41. Sternberg, N., Sauer, B., Hoess, R., and Abremski, K. (1986) Bacteriophage P1cre gene and its regulatory region. Evidence for multiple promoters and for regulation by DNA methylation.J. Mol. Biol. 187, 197–212.

    Article  PubMed  CAS  Google Scholar 

  42. Van der Vossen, J. B. M., van der Lelie, E., and Venema, G. (1987) Isolation and characterization ofStreptococcus cremoris Wg2-specific promoters.Appl. Environ. Microbiol. 53, 2452–2457.

    PubMed  Google Scholar 

  43. O'Sullivan, D. J., Walker, S. A., West, S. G., and Klaenhammer, T. R. (1996) Development of an expression strategy using a lytic phage to trigger explosive plasmid amplification and gene expression.Bio/Technology 14, 82–87.

    Article  PubMed  Google Scholar 

  44. Buist, G., Nauta, A., Sanders, J. W., and karsens, H. (1996) Construction of food-grade inducible lysis systems forLactococcus lactis. Abstract G3 of the 5th Symposium on Lactic Acid Bacteria: Genetics, Metabolism and Applications.

  45. Schroeder, C. J., Robert, C., Lenzen, G., McKay, L. L., and Mercenier, A. (1991) Analysis of thelacZ sequences from twoStreptococcus thermophilus strains: comparison withEscherichia coli andLactobacillus bulgaricus β-galactosidase sequences.J. Gen. Microbiol. 137, 369–380.

    PubMed  CAS  Google Scholar 

  46. Hill, C., Pierce, K., and Klaenhammer, T. R. (1989) The conjugative plasmid pTR2030 encodes two bacteriophage defense mechanisms in lactococci, restriction modification (R+/M+) and abortive infection (Hsp+).Appl. Environ. Microbiol. 55, 2416–2419.

    PubMed  CAS  Google Scholar 

  47. Lillehaug, D., Lindqvist, B. H., and Birkeland, N.-K. (1991) Characterization of θLC3, aLactococcus lactis subsp.cremoris temperate bacteriophage with cohesive single-stranded DNA ends.Appl. Environ. Microbiol. 57, 3206–3211.

    PubMed  CAS  Google Scholar 

  48. Walker, S. A., O'Sullivan, D. J., West, S. G., and Klaenhammer, T. R. (1995) Identification of a phageinducible promoter and development of a phage-specific explosive system forLactococcus lactis.J. Dairy. Sci. 78, 108.

    Google Scholar 

  49. Hill, C., Miller, L. A., and Klaenhammer, T. R. (1990) Cloning, expression, and sequence determination of a bacteriophage fragment encoding bacteriophage resistance inLactococcus lactis.J. Bacteriol. 172, 6419–6426.

    PubMed  CAS  Google Scholar 

  50. O'Sullivan, D. J., Hill, C., and Klaenhammer, T. R. (1993) Effect of increasing the copy number of bacteriophage origins of replication, in trans, on incoming phage proliferation.Appl. Environ. Microbiol. 59, 2449–2456.

    PubMed  Google Scholar 

  51. Dao, M. L. and Ferretti, J. J. (1985)Streptococcus-Escherichia coli shuttle vector pSA3 and its use in the cloning of streptococcal genes.Appl. Environ. Microbiol. 49, 115–119.

    PubMed  CAS  Google Scholar 

  52. Van Sinderen, D., Karsens, H., Kok, J., Terpstra, P., Ruiters, M. H. J., Venema, G., and Nauta, A. (1996) Sequence analysis and molecular characterization of the temperate lactococcal bacteriophage rlt.Mol. Microbiol. 19, 1343–1355.

    Article  PubMed  Google Scholar 

  53. Nauta, A., van Sinderen, D., Karsens, H., Smit, E., Venema, G., and Kok, J. (1996) Inducible gene expression mediated by a repressor-operator system isolated fromLactococcus lactis bacteriophage rlt.Mol. Microbiol. 19, 1331–1341.

    Article  PubMed  CAS  Google Scholar 

  54. Buist, G., Gökemeijer, J., Venema, G., and Kok, J. (1996b) Functional analysis of the major autolysin ofLactococcus lactis. Abstract G59 of the 5th Symposium on Lactic Acid Bacteria: Genetics, Metabolism, and Applications, Federation of European Microbiological Sciences.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd R. Klaenhammer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Djordjevic, G.M., Klaenhammer, T.R. Inducible gene expression systems inLactococcus lactis . Mol Biotechnol 9, 127–139 (1998). https://doi.org/10.1007/BF02760814

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02760814

Index Entries

Navigation