Advertisement

Molecular Biotechnology

, Volume 9, Issue 2, pp 127–139 | Cite as

Inducible gene expression systems inLactococcus lactis

  • Gordana M. Djordjevic
  • Todd R. Klaenhammer
Review

Abstract

Lactococcus lactis is industrially important microorganism used in many dairy fermentations. Numerous genes and gene expression signals from this organism have now been identified and characterized. Recently, several naturally occurring, inducible gene-expression systems have also been described inL. lactis. The main features of these systems can be exploited to design genetically engineered expression cassettes for controlled production of various proteins and enzymes. Novel gene-expression systems inLactococcus have great potential for development of industrial cultures with desirable metabolic traits for a variety of bioprocessing applications.

Index Entries

Lactococcus inducible gene expression starter cultures bioprocessing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Van Rooijen, R. J. and de Vos, W. M. (1990) Molecular cloning, transcriptional analysis, and nucleotide sequence oflacR, a gene encoding the repressor of the lactose phosphotransferase system ofLactococcus lactis.J. Biol. Chem. 265, 18,499–18,503.Google Scholar
  2. 2.
    Van Rooijen, R. J., van Schalkwijk, S., and de Vos, W. M. (1991) Molecular cloning, characterization, and nucleotide sequence of the tagatose 6-phosphate pathway gene cluster of the lactose operon ofLactococcus lactis.J. Biol. Chem. 266, 7176–7181.PubMedGoogle Scholar
  3. 3.
    Renault, P., Gaillardin, C., and Heslot, H. (1989) Product of theLactococcus lactis required for malolactic fermentation is homologous to a family of positive regulators.J. Bacteriol. 171, 3108–3114.PubMedGoogle Scholar
  4. 4.
    Stragier, P. and Patte, J. C. (1983) Regulation of diaminopimelate decarboxylase synthesis inEscherichia coli. III. Nucleotide sequence and regulation of thelysR gene.J. Mol. Biol. 168, 333–350.PubMedCrossRefGoogle Scholar
  5. 5.
    Wek, R. C. and Hatfield, G. W. (1986) Nucleotide sequence andin vivo expression of theilvY andilvC genes inEscherichia coli K12.J. Biol. Chem. 261, 2441–2450.PubMedGoogle Scholar
  6. 6.
    Chang, M., Hadero, A., and Crawford, I. P. (1989) Sequence of thePseudomonas aeruginosa trpI activator gene and relatedness oftrpI to other procaryotic regulatory genes.J. Bacteriol. 171, 172–183.PubMedGoogle Scholar
  7. 7.
    Plamann, L. S. and Stauffer, G. V. (1987) Nucleotide sequence of theSalmonella typhimurium metR gene and themetR-metE control region.J. Bacteriol. 169, 3932–3937.PubMedGoogle Scholar
  8. 8.
    Van Rooijen, R. J., and de Vos, W. M. (1992) Characterization ofLactococcus lactis lactose operon promoter: contribution of flanking sequences and LacR repressor to promoter activity.J. Bacteriol. 174, 2273–2280.PubMedGoogle Scholar
  9. 9.
    Eaton, T. J., Shearman, C. A., and Gasson, M. J. (1993) The use of bacterial luciferase genes as reporter genes inLactococcus: regulation of theLactococcus lactis subsp.lactis lactose genes.J. Gen. Microbiol. 139, 1495–1501.PubMedGoogle Scholar
  10. 10.
    Kuipers, O., Beerthuyzen, M. M., Deruyter, P. G. G. A., Luesink, E. J., and de Vos, W. M. (1995) Autoregulation of nisin biosynthesis inLactococcus lactis by signal transduction.J. Biol. Chem. 270, 27,299–27,304.Google Scholar
  11. 11.
    Kuipers, O. P., Beerthuyzen, M. M., Siezen, R. J., and de Vos, W. M. (1993) Characterization of the nisin gene clusternisABTCIPR ofLactococcus lactis. Requirement of expression of thenisA andnisI genes for development of immunity.Eur. J. Biochem. 216, 281–291.PubMedCrossRefGoogle Scholar
  12. 12.
    de Ruyter, P. G. G. A., Kuipers, O. P., Beerthuyzen, M. M., van Alen-Boerrigter, I., and de Vos, W. M. (1996) Functional analysis of promoters in the nisin gene cluster ofLactococcus lactis.J. Bacteriol. 178, 3434–3439.PubMedGoogle Scholar
  13. 13.
    de Ruyter, P. G. G. A., Kuipers, O. P., and de Vos, W. M. (1996) Controlled gene expression systems forLactococcus lactis with the food-grade inducer nisin.Appl. Environ. Microbiol. 62, 3362–3367.Google Scholar
  14. 14.
    de Ruyter, P. G. G. A., Kuipers, O. P., Bijl, L. C., and de Vos, W. M. (1996) Controlled gene expression inLactococcus lactis. Abstract H46 of the 5th Symposium on lactic Acid Bacteria: Genetics, Metabolism, and Applications. Federation of European Microbiological Sciences.Google Scholar
  15. 15.
    Gasson, M. J. (1996) Lytic systems in lactic acid bacteria and their bacteriophages.Antonie van Leeuwenhoek 70, 147–159.PubMedCrossRefGoogle Scholar
  16. 16.
    Payne, J., MacCormick, C. A., Griffin, H. G., and Gasson, M. J. (1996) Exploitation of a chromosomally integrated lactose operon for controlled gene expression inLactococcus lactis.FEMS Microbiol. Lett. 136, 19–24.PubMedCrossRefGoogle Scholar
  17. 17.
    Luesink, E. J., Beerthuyzen, M. M. Marugg, J. D., Kuipers, O. P., and de Vos, W. M. (1996) Expression of the divergently transcribed sucrose genes fromLactococcus lactis is controlled by thesacR gene. Abstract H47 of the 5th Symposium on Lactic Acid Bacteria: Genetics, Metabolism, and Applications, Federation of European Microbiological Sciences.Google Scholar
  18. 18.
    Marugg, J. D., Meijer, W., van Kranenburg, R., Laverman, P., Bruinenberg, P. G., and de Vos, W. M. (1995) Medium-dependent regulation of proteinase gene expression inLactococcus lactis: control of transcription initiation by specific dipeptides.J. Bacteriol. 177, 2982–2989.PubMedGoogle Scholar
  19. 19.
    Marugg, J. D., van Kranenburg, R., Laverman, P., Rutten, G. A. M., and de Vos, W. M. (1996) Identical transcriptional control of the divergently transcribed prtP and prtM genes that are required for proteinase production inLactococcus lactis SK11.J. Bacteriol. 178, 1525–1531.PubMedGoogle Scholar
  20. 20.
    Kok, J. (1996) Inducible gene expression and environmentally regulated genes in lactic acid bacteria.Antonie van Leeuwenhoek 70, 129–145.PubMedCrossRefGoogle Scholar
  21. 21.
    Sanders, J. W., Leenhouts, K. J., Haandrikman, A. J., Venema, G., and Kok, J. (1995) Stress response inLactococcus lactis: Cloning, expression analysis, and mutation of the lactococcal superoxidase dismutase gene.J. Bacteriol. 177, 5254–5260.PubMedGoogle Scholar
  22. 22.
    van Asseldonk, de Vos, W. M., and Simons, G. (1993) Cloning, nucleotide sequence, and regulatory analysis of theLactococcus lactis dnaJ gene.J. Bacteriol. 175, 1637–1644.PubMedGoogle Scholar
  23. 23.
    Madsen, S. M., Vrang, A., and Israelsen, H. (1996) Engineering of a pH regulated promoter fromLactococcus lactis. Abstract H11 of the 5th Symposium on Lactic Acid Bacteria: Genetics, Metabolism, and Applications, Federation of European Microbiological Sciences.Google Scholar
  24. 24.
    Sanders, J. W., Leenhouts, K., Venema, G., and Kok, J. (1996) Analysis of a chloride-inducible lactococcal promoter. Abstract H22 of the 5th Symposium on Lactic Acid Bacteria: Genetics, Metabolism, and Applications, Federation of European Microbiological Sciences.Google Scholar
  25. 25.
    Leenhouts, K., Sanders, J. W., Kok, J., Tisminetsky, S., and Baralle, F. (1996) A new inducible expression system forLactococcus lactis, Abstract #E12 of the 5th Symposium on Lactic Acid Bacteria: Genetics, Metabolism, and Applications, Federation of European Microbiological Sciences.Google Scholar
  26. 26.
    Madsen, M. and Nilsson, D. (1996) Purine regulated promoters inLactococcus lactis. Abstract H7 of the 5th Symposium on Lactic Acid Bacteria: Genetics, Metabolism, and Applications, Federation of European Microbiological Sciences.Google Scholar
  27. 27.
    Kibenich, A. and Johansen, E. (1996) Food-grade expression of the θML3 lysin gene inLactococcus lactis. Abstract G4 of the 5th Symposium on Lactic Acid Bacteria: Genetics, Metabolism, and Applications, Federation of European Microbiological Sciences.Google Scholar
  28. 28.
    Schofield, K. M., Wilson, P. W., Le Page, R. F. W., and Wells, J. M. (1996) Optimization of translation initiation inLactococcus lactis. Abstract H44 of the 5th Symposium on Lactic Acid Bacteria: Genetics, Metabolism, and Applications, Federation of European Microbiological Sciences.Google Scholar
  29. 29.
    Wells, J. M., Wilson, P. W., Norton, P. A., Gasson, M. J., Le Page, R. W. F. (1993)Lactococcus lactis: high-level expression of tetanus toxin fragment C and protection against lethal challenge.Mol. Microbiol. 8, 1155–1162.PubMedCrossRefGoogle Scholar
  30. 30.
    Wells, J. M., Wilson, P. W., Norton, P. A., and Le Page, R. W. F. (1993) A model system for the investigation of heterologous protein secretion pathways inLactococcus lactis.Appl. Environ. Microbiol. 59, 3954–3959.PubMedGoogle Scholar
  31. 31.
    Steidler, L., Wells, J. M., Raeymaekers, A., Vandekerckhove, J., Fiers, W., and Remaut, E. (1995) Secretion of biologically active murine interleukin-2 byLactococcus lactis subsp.lactis.Appl. Environ. Microbiol. 61, 1627–1629.PubMedGoogle Scholar
  32. 32.
    Davanloo, P., Rosenberg, A. H., Dunn, J. J., and Studier, W. (1984) Cloning and expression of the gene for bacteriophage T7 RNA polymerase.Proc. Natl. Acad. Sci. USA 81, 2035–2039.PubMedCrossRefGoogle Scholar
  33. 33.
    Simon, D. and Chopin, A. (1988) Construction of a vector plasmid family and its use for molecular cloning inStreptococcus lactis.Biochimie 70, 559–566.PubMedCrossRefGoogle Scholar
  34. 34.
    Halpern, J. L., Habig, W. H., Neale, E. A., and Stibitz, S. (1990) Cloning and expression of functional fragment C of tetanus toxin.Infect. Immunity 58, 1004–1009.Google Scholar
  35. 35.
    Maeda, S. and Gasson, M. J. (1986) Cloning, expression, and location of theStreptococcus lactis gene for phospho-β-D-galactosidase.J. Gen. Microbiol. 132, 331–340.PubMedGoogle Scholar
  36. 36.
    Demolder, J., Fiers, W., and Contrears, R. (1992) Efficient synthesis of secreted murine interleukin-2 by Saccharomyces cerevisiae: influence of 3′-untraslated regions and codon usage.Gene 111, 207–213.PubMedCrossRefGoogle Scholar
  37. 37.
    MacCormick, C. A., Griffin, H. G., and Gasson, M. J. (1995) Construction of a food-grade host/vector system forLactococcus lactis based on the lactose operon.FEMS Microbiol. Lett. 127, 1,2.CrossRefGoogle Scholar
  38. 38.
    Platteeuw, C., van Alen Boerrigter, Schalkwijk, S., and de Vos, W. M. (1996) Food-grade cloning and expression system forLactococcus lactis.Appl. Environ. Microbiol. 62, 1008–1013.PubMedGoogle Scholar
  39. 39.
    Platteeuw, C. and de Vos, W. M. (1992) Location, characterization and expression of lytic enzymeencoding gene,lytA, ofLactococcus lactis bacteriophage_US3.Gene 118, 115–120.PubMedCrossRefGoogle Scholar
  40. 40.
    Shearman, C., Underwood, H., Jury, K., and Gasson, M. (1989) Cloning and DNA sequence analysis of aLactococcus bacteriophage lysin gene.Mol. Gen. Genet. 218, 214–221.PubMedCrossRefGoogle Scholar
  41. 41.
    Sternberg, N., Sauer, B., Hoess, R., and Abremski, K. (1986) Bacteriophage P1cre gene and its regulatory region. Evidence for multiple promoters and for regulation by DNA methylation.J. Mol. Biol. 187, 197–212.PubMedCrossRefGoogle Scholar
  42. 42.
    Van der Vossen, J. B. M., van der Lelie, E., and Venema, G. (1987) Isolation and characterization ofStreptococcus cremoris Wg2-specific promoters.Appl. Environ. Microbiol. 53, 2452–2457.PubMedGoogle Scholar
  43. 43.
    O'Sullivan, D. J., Walker, S. A., West, S. G., and Klaenhammer, T. R. (1996) Development of an expression strategy using a lytic phage to trigger explosive plasmid amplification and gene expression.Bio/Technology 14, 82–87.PubMedCrossRefGoogle Scholar
  44. 44.
    Buist, G., Nauta, A., Sanders, J. W., and karsens, H. (1996) Construction of food-grade inducible lysis systems forLactococcus lactis. Abstract G3 of the 5th Symposium on Lactic Acid Bacteria: Genetics, Metabolism and Applications.Google Scholar
  45. 45.
    Schroeder, C. J., Robert, C., Lenzen, G., McKay, L. L., and Mercenier, A. (1991) Analysis of thelacZ sequences from twoStreptococcus thermophilus strains: comparison withEscherichia coli andLactobacillus bulgaricus β-galactosidase sequences.J. Gen. Microbiol. 137, 369–380.PubMedGoogle Scholar
  46. 46.
    Hill, C., Pierce, K., and Klaenhammer, T. R. (1989) The conjugative plasmid pTR2030 encodes two bacteriophage defense mechanisms in lactococci, restriction modification (R+/M+) and abortive infection (Hsp+).Appl. Environ. Microbiol. 55, 2416–2419.PubMedGoogle Scholar
  47. 47.
    Lillehaug, D., Lindqvist, B. H., and Birkeland, N.-K. (1991) Characterization of θLC3, aLactococcus lactis subsp.cremoris temperate bacteriophage with cohesive single-stranded DNA ends.Appl. Environ. Microbiol. 57, 3206–3211.PubMedGoogle Scholar
  48. 48.
    Walker, S. A., O'Sullivan, D. J., West, S. G., and Klaenhammer, T. R. (1995) Identification of a phageinducible promoter and development of a phage-specific explosive system forLactococcus lactis.J. Dairy. Sci. 78, 108.Google Scholar
  49. 49.
    Hill, C., Miller, L. A., and Klaenhammer, T. R. (1990) Cloning, expression, and sequence determination of a bacteriophage fragment encoding bacteriophage resistance inLactococcus lactis.J. Bacteriol. 172, 6419–6426.PubMedGoogle Scholar
  50. 50.
    O'Sullivan, D. J., Hill, C., and Klaenhammer, T. R. (1993) Effect of increasing the copy number of bacteriophage origins of replication, in trans, on incoming phage proliferation.Appl. Environ. Microbiol. 59, 2449–2456.PubMedGoogle Scholar
  51. 51.
    Dao, M. L. and Ferretti, J. J. (1985)Streptococcus-Escherichia coli shuttle vector pSA3 and its use in the cloning of streptococcal genes.Appl. Environ. Microbiol. 49, 115–119.PubMedGoogle Scholar
  52. 52.
    Van Sinderen, D., Karsens, H., Kok, J., Terpstra, P., Ruiters, M. H. J., Venema, G., and Nauta, A. (1996) Sequence analysis and molecular characterization of the temperate lactococcal bacteriophage rlt.Mol. Microbiol. 19, 1343–1355.PubMedCrossRefGoogle Scholar
  53. 53.
    Nauta, A., van Sinderen, D., Karsens, H., Smit, E., Venema, G., and Kok, J. (1996) Inducible gene expression mediated by a repressor-operator system isolated fromLactococcus lactis bacteriophage rlt.Mol. Microbiol. 19, 1331–1341.PubMedCrossRefGoogle Scholar
  54. 54.
    Buist, G., Gökemeijer, J., Venema, G., and Kok, J. (1996b) Functional analysis of the major autolysin ofLactococcus lactis. Abstract G59 of the 5th Symposium on Lactic Acid Bacteria: Genetics, Metabolism, and Applications, Federation of European Microbiological Sciences.Google Scholar

Copyright information

© Humana Press Inc 1998

Authors and Affiliations

  1. 1.Department of Microbiology and Food ScienceNorth Carolina State UniversityRaleigh

Personalised recommendations