Israel Journal of Mathematics

, Volume 32, Issue 4, pp 349–355 | Cite as

Finite coding factors of Markov generators



Using Thouvenot’s relativized isomorphism theory, the author develops a conditionalized version of the Friedman—Ornstein result on Markov processes. This relativized statement is used to study the way in which a factor generated by a finite length stationary coding sits in a Markov process. All such factors split off if they are maximal in entropy. Moreover, one can show that if a finite coding factor fails to split off, it is relatively finite in a larger factor which either generates or itself splits off.


Markov Process Conditional Independence Large Factor Bernoulli Shift Converse Direction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. A. Friedman and D. S. Ornstein,On isomorphism of weak Bernoulli transformations, Advances in Math.5 (1970), 365–394.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    D. S. Ornstein,Factors of Bernoulli shifts, Israel J. Math.21 (1975), 145–153.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    M. Rahe,Relatively finitely determined implies relatively very weak Bernoulli, Canad. J. Math.30 (1978), 531–548.MATHMathSciNetGoogle Scholar
  4. 4.
    J.-P. Thouvenot,Quelques propriétés des systèmes dynamiques qui se décomposent en un produit de deux systèmes dont l’un est un schèma de Bernoulli Israel J. Math.21 (1975), 177–207.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    J.-P. Thouvenot,Remarques sur les systèmes dynamiques donnes avec plusiers facteurs, Israel J. Math.21 (1975), 215–232.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© The Weizmann Science Press of Israel 1979

Authors and Affiliations

  • M. Rahe
    • 1
  1. 1.Department of MathematicsTexas A&M UniversityCollege StationUSA

Personalised recommendations