Advertisement

Israel Journal of Mathematics

, Volume 6, Issue 3, pp 295–302 | Cite as

On the projection and macphail constants ofl n p spaces

  • Yehoram Gordon
Article

Abstract

We prove that the projection and Macphail constants ofl n p (1≦p≦2) are asymptotically equivalent ton 1/2 andn −1/2 respectively. We also obtain some relations linking certain parameters of general finite dimensional real Banach spaces.

Keywords

Banach Space Convex Body Linear Projection Open Unit Ball Riesz Representation Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Dunford, and J. T. Schwartz,Linear operators Part I, Interscience, New York (1958).MATHGoogle Scholar
  2. 2.
    A. Dvoretzky,Some results on convex bodies and Banach spaces, Proc. International Symp. on Linear spaces, Jerusalem (1961), 123–160.Google Scholar
  3. 3.
    B. Grünbaum,Projection constants, Trans. Amer. Math. Soc.95 (1960), 451–465.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    V. E. Gurari, M. E. Kadec and V. E. Mazaev,On the distance between isomorphic L p spaces of finite dimension (Russian), Matematiceskii Sbornik, 70 (112): 4 (1966), 481–489.Google Scholar
  5. 5.
    ——,On the dependence of certain properties of Minkowsky spaces on asymmetry (Russian), Matematiceskii Sbornik 71 (113):1 (1966), 24–29.Google Scholar
  6. 6.
    F. John,Extremum problems with inequalities as subsidiary conditions, Courant Anniversary Volume, Interscience, New York (1948), 187–204.Google Scholar
  7. 7.
    J. Lindenstrauss, and A. Pełczyński,Absolutely summing operators in L spaces and their applications, Studia Math.29 (1968), 275–326.MATHMathSciNetGoogle Scholar
  8. 8.
    D. Rutovitz,Some parameters associated with finite dimensional Banach spaces, J. London Math. Soc.40 (1965), 241–255.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Hebrew University 1968

Authors and Affiliations

  • Yehoram Gordon
    • 1
  1. 1.The Hebrew University of JerusalemIsrael

Personalised recommendations