Advertisement

Israel Journal of Mathematics

, Volume 6, Issue 3, pp 223–232 | Cite as

On certain homomorphisms of restriction algebras of symmetric sets

  • Robert Schneider
Article
  • 37 Downloads

Abstract

LetG be a locally compact abelian group and Γ its dual group. For any closedHG denote the algebra of restrictions toH of Fourier transforms of functions inL 1(Γ) byA(H). This paper considers certain Cantor like sets inR and ΠZ m(j) and gives some necessary algebraic criterion fornatural isomorphisms of their restriction algebras.

Keywords

Banach Algebra Group Algebra Interscience Publisher Dual Group Compact Abelian Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    N. Akhiezer,Theory of Approximations, translated by C. J. Hyman, Ungar, New York, 1956.Google Scholar
  2. 2.
    A. Beurling and H. Helson,Fourier-Stieltjes transforms with bounded powers, Math. Scand.1 (1953), 120–126.MATHMathSciNetGoogle Scholar
  3. 3.
    H. Bohr,Almost Periodic Functions, translated by H. Cohn, Chelsea, New York, 1947.Google Scholar
  4. 4.
    J. W. S. Cassels,An Introduction to Diophantine Approximation, Cambridge Univ. Press, 1957.Google Scholar
  5. 5.
    K. DeLeeuw and Y. Katznelson,On certain homomorphisms of quotients of group algebras, Israel J. Math.2 (1964), 120–126.MathSciNetGoogle Scholar
  6. 6.
    N. Dunford and J. T. Schwartz,Linear Operators, Part I General Theory, Interscience Publishers, New York, 1958.Google Scholar
  7. 7.
    J.-P. Kahane and R. Salem,Ensembles Parfaits et Séries Trigonométriques, Hermann, Paris, 1963.MATHGoogle Scholar
  8. 8.
    Y. Katznelson and W. Rudin,The Stone-Weierstrass property in Banach algebras, Pacific J. Math.11 (1961), 253–265.MATHMathSciNetGoogle Scholar
  9. 9.
    L. Loomis,An Introduction to Abstract Harmonic Analysis, D. VanNostrand, Princeton, 1953.MATHGoogle Scholar
  10. 10.
    O. C. McGehee,Sets of uniqueness and sets of multiplicity, Israel J. Math.4 (1966), 83–99.MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    ——,Certain isomorphisms between quotients of a group algebra, Pacific J. Math.21 (1967), 133–152.MATHMathSciNetGoogle Scholar
  12. 12.
    Y. Meyer,Isomorphisms entre certaines algèbraes de restrictions., C.R.Acad. Sci. Paris,265 (1967), 18–19.MATHGoogle Scholar
  13. 13.
    M. Naimark,Normed Rings, translated by L. Boron, P. Noordhoff N.V., Groningen, 1959.MATHGoogle Scholar
  14. 14.
    L. Pontrjagin,Topological Groups, translated by E. Lehmer, Princeton Univ. Press, Princeton, 1958.Google Scholar
  15. 15.
    W. Rudin,Fourier Analysis on Groups, Interscience Publishers, New York, 1962.MATHGoogle Scholar
  16. 16.
    A. Zygmund,Trigonometric Series, I and II, Cambridge Univ. Press, London, 1959.Google Scholar

Copyright information

© Hebrew University 1968

Authors and Affiliations

  • Robert Schneider
    • 1
    • 2
  1. 1.Stanford UniversityUSA
  2. 2.Cornell UniversityUSA

Personalised recommendations