Israel Journal of Mathematics

, Volume 13, Issue 1–2, pp 24–55 | Cite as

Algèbre des Opératures Aux Differences Finies

  • L. S. Frank


An algebra of difference operators is introduced and some of their properties are studied. It is shown that this is aC*-algebra and a differences analogue of Gårding’s inequality is proved.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. S. Frank,Difference operators in convolutions, Dokl. Akad. Nauk SSSR8 (1968), No. 2.Google Scholar
  2. 2.
    L. S. Frank,Spaces of net functions, Mat. Sb (n. s.),86 (128) (1971) 2(10).Google Scholar
  3. 3.
    K. O. Friedrichs,Pseudo-differential operators, an introduction, Lecture Notes with the assistance of R. Valliancourt, Courant Institute of Mathematics and Science, New York University, 1968.Google Scholar
  4. 4.
    L. Hörmander,Algebra of pseudodifferential operators, Comm. Pure Appl. Math.18 (1965).Google Scholar
  5. 5.
    J. J. Kohn and L. Nirenberg,Algebra of pseudodifferential operators, Comm. Pure Appl. Math.18 (1965).Google Scholar
  6. 6.
    P. D. Lax and L. Nirenberg,On the stability for difference schemes: a sharp form of Gårding’s inequality, Comm. Pure Appl. Math.19 (1966), 437–492.CrossRefMathSciNetGoogle Scholar
  7. 7.
    V. Thomée and B. Westergren,Elliptic difference equations and interior regularity, Numer. Math.11 (1968), 196–210.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    R. Vaillancourt,A simple proof of Lax-Nirenberg theorems, Comm. Pure Appl. Math.23 (1970), 151–163.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    M. Yamaguti and T. Nogi,An algebra of pseudo difference schemes and its application, Publ. Res. Inst. Math. Sci. Ser A.3 (1967), 151–166.MathSciNetGoogle Scholar

Copyright information

© Hebrew University 1972

Authors and Affiliations

  • L. S. Frank
    • 1
  1. 1.The Hebrew University of JerusalemIsrael

Personalised recommendations