Israel Journal of Mathematics

, Volume 2, Issue 3, pp 143–154 | Cite as

Complexes of rings

  • S. A. Amitsur


Homology group of complexes of finitely generated projective modules are shown to be torsion groups, and a simplified proof of the vanishing of the cohomology groupsn≧3 of inseparable extensions is given.


Prime Ideal Local Ring Cohomology Group Homology Group Projective Module 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. A. Amitsur,Simple algebras and cohomology groups for arbitrary complexes, Trans. Amer. Math. Soc.90 (1959), 73–112.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    S. A. Amitsur,Homology groups and double complexes for arbitrary fields, J. Math. Soc. of Japan,14 (1962), 1–25.MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    A. J. Berkson,On Amitsur’s complex and restricted Lie Algebras. Trans. Amer. Math. Soc.109 (1963), 430–443.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    O. Goldman,Determinants in projective modules, Nagoya Math. J.18 (1961), 27–36.MATHMathSciNetGoogle Scholar
  5. 5.
    A. Rosenberg and D. Zelinsky,Amitsur’s complex for inseparable fields, Osaka Math. J.14 (1962), 219–240.MATHMathSciNetGoogle Scholar
  6. 6.
    N. Bourbaki,Algèbre, Ch. 8 Herman, Paris (1958).Google Scholar

Copyright information

© Hebrew University 1964

Authors and Affiliations

  • S. A. Amitsur
    • 1
    • 2
  1. 1.The Hebrew University of JerusalemIsrael
  2. 2.Northwestern UniversityEvanston

Personalised recommendations