Israel Journal of Mathematics

, Volume 1, Issue 1, pp 37–47 | Cite as

On series in linear topological spaces

  • Aryeh Dvoretzky


The main result is that in every complete locally-bounded linear topological space there exist series which are unconditionally yet not absolutely convergent. Relations between absolute, unconditional and metric convergence of series are studied.


Banach Space Interior Point Cauchy Sequence Dimensional Subspace Convergent Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Day, M.M., 1958,Normed Linear Spaces, Ergeb. d. Math., N.F., H. 21, Springer, Berlin-Göttingen-Heidelberg.MATHGoogle Scholar
  2. 2.
    Dvoretzky, A., Some near-sphericity results,Proc. Symposia in Pure Math., vol. 7.Google Scholar
  3. 3.
    Dvoretzky, A., 1961, Some results on convex bodies and Banachspaces,Proc. International Symp. on Linear Spaces, Jerusalem 1960, pp. 123–160. Israel Academy of Sciences and Humanities, Jerusalem.Google Scholar
  4. 4.
    Dvoretzky, A. and Rogers, C.A., 1950, Absolute and unconditional convergence in normal linear spaces,Proc. Nat. Acad. Sci. U.S.A.,36, 192–197.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Grothendieck, A., 1953, Sur certaines classes de suites dans les espaces de Banach et le théorème de Dvoretzky-Rogers,Bol. Soc. Mat. Sao. Paulo,8, 83–110.Google Scholar
  6. 6.
    Köthe, G., 1960,Topologische Lineare Räume I. Springer, Berlin-Gottingen-Heidelberg.MATHGoogle Scholar
  7. 7.
    Rolewicz, S. 1957, On a certain class of linear metric spaces,Bull. Acad. Pol. Sci., C1. III,5, 471–473.MATHMathSciNetGoogle Scholar
  8. 8.
    Rolewicz, S., 1961, On a generalization of the Dvoretzky-Rogers theorem,Colloq. Math. 103–106.Google Scholar

Copyright information

© Hebrew University 1963

Authors and Affiliations

  • Aryeh Dvoretzky
    • 1
  1. 1.The Hebrew University of JerusalemIsrael

Personalised recommendations