Israel Journal of Mathematics

, Volume 28, Issue 1–2, pp 91–97 | Cite as

On extremal quasiconformal extensions of conformal mappings

  • Edgar Reich


Letf(t, z)=z+tω(1/z) be schlicht for ⋎z⋎>1, ω(z) = Σ n = 0/∞ a n z n ,t>0. The paper considers first-order estimates for the dilatation of extremal quasiconformal extensions off ast→0.


Conformal Mapping Quasiconformal Mapping Extremal Function Jordan Domain Infinitesimal Deformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lars V. Ahlfors,Some remarks on Teichmüller’s space of Riemann surfaces, Ann. of Math.74 (1961), 171–191.CrossRefMathSciNetGoogle Scholar
  2. 2.
    Reiner Kühnau,Verzerrungssätze und Koeffizientenbedingungen vom Grunskyschen Typ für quasikonforme Abbildungen, Math. Nachr.48 (1971), 77–105.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Olli Lehto,Schlicht functions with a quasiconformal extension, Ann. Acad. Sci. Fenn. Ser. AI500 (1971), 10 pp.Google Scholar
  4. 4.
    Chr. Pommerenke,Univalent Functions, Vandenhoeck and Ruprecht, Göttingen, 1975, Chapter 9.MATHGoogle Scholar
  5. 5.
    Edgar Reich and Kurt Strebel,Extremal quasiconformal mappings with given boundary values, in Contributions to Analysis, a Collection of Papers Dedicated to Lipman Bers, Academic Press, 1974.Google Scholar
  6. 6.
    M. Schiffer and G. Schober,Coefficient problems and generalized Grunsky inequalities, Arch. Rational Mech. Anal.60 (1976), 205–228.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Hebrew University 1977

Authors and Affiliations

  • Edgar Reich
    • 1
  1. 1.School of MathematicsUniversity of MinnesotaMinneapolisUSA

Personalised recommendations