Il Nuovo Cimento B (1971-1996)

, Volume 106, Issue 3, pp 273–289 | Cite as

First-order field equations in general relativity

  • M. Mattes
  • M. Sorg


The metric tensor of a Riemannian space-time is composed quadratically of timelike and spacelike tetrad fields. A system of first-order field equations for the tetrad fields is postulated, which determines the geometric structure of space-time as well as the second-order dynamics of the fields. The energy-momentum content of the fields automatically corresponds to the geometric structure of the space-time according to the Einstein field equations. The spin contribution of the fields is mutually compensated and therefore spin does not influence the space-time geometry. As a consequence, it is not necessary to include torsion into the general theory of relativity and nevertheless the equivalence principle can be used to consistently transfer energy-momentum tensors from flat to curved space.


PACS 04.20 General relativity PACS 04.20.Cv Fundamental problems and general formalism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Penrose: in300 Years of Gravitation, edited byS. W. Hawking andW. Israel (Cambridge, 1987).Google Scholar
  2. [2]
    D. Ivanenko andG. Sardanashvily:Phys. Rep.,94, 1 (1983).MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    F. W. Hehl:Rep. Math. Phys.,9, 55 (1976).MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    F. W. Hehl et al.:Rev. Mod. Phys.,48, 393 (1976).MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    The fields are measured here in geometric units [6], such that their physical energy-momentum tensor\( \tilde T \) aquires the dimension (length)−4 and is denoted then by\( T( = (\hbar c)^{ - 1} \tilde T) \). As a consequence, the Einstein field equations contain the square of the Planck lengthL p=(ħkc −3)1/2 rather than Newtons’s gravitational constantk.Google Scholar
  6. [6]
    C. W. Misner andJ. A. Wheeler:Ann. Phys.,2, 525 (1957).MathSciNetADSCrossRefMATHGoogle Scholar
  7. [7]
    An exception is the book ofV. de Sabbata andM. Gasperini:Introduction to Gravitation (World Scientific, Singapore, 1985), which however favour the torsion approach.Google Scholar
  8. [8]
    We use the Minkowski metricg μλ=diag (1,−1, −1, −1).Google Scholar
  9. [9]
    M. Mattes andM. Sorg:Z. Naturforsch. A,44, 222 (1989).MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    R. Brucker andM. Sorg:Z. Naturforsch. A,42, 521 (1987).MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    C. W. Misner, K. S. Thorne andJ. A. Wheeler:Gravitation (Freeman, 1973).Google Scholar

Copyright information

© Società Italiana di Fisica 1991

Authors and Affiliations

  • M. Mattes
    • 1
  • M. Sorg
    • 1
  1. 1.Institut für Theoretische PhysikUniversität StuttgartStuttgart 80FRG

Personalised recommendations