Programming and Computer Software

, Volume 26, Issue 1, pp 23–24 | Cite as

The inertia of matrices and quadratic forms, conditionally definite matrices, the separation of the roots of algebraic equations, and MAPLE procedures

  • Kh. D. Ikramov
  • N. V. Savel’eva


Quadratic Form Hermitian Form Separation Problem Nonnegative Orthant Exact Arithmetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Chabrillac, Y. and Crouzex, J.-P., Definiteness and Semidefiniteness of Quadratic Forms Revisited,Linear Algebra Appl., 1984, vol. 63, pp. 283–292.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Ikramov, Kh. D. and Savel’eva, N.V., Computer Algebra Procedures for Verifying the Definiteness of a Matrix on a Subspace,Zh. Vychisl. Mat. Mat. Fiz., 1999, vol. 39, no. 3, pp. 357–370.MathSciNetGoogle Scholar
  3. 3.
    Ikramov, Kh. D. and Savel’eva, N.V., Copositive Matrices,Zh. Vychisl. Mat. Mat. Fiz., 1999, vol. 39, no. 8, pp. 1253–1279.MathSciNetGoogle Scholar
  4. 4.
    Väliaho, H., Criteria for Copositive matrices,Linear Algebra Appl., 1986, vol. 81, pp. 19–34.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Krein, M.G. and Naimark, M.A.,Metod simmetricheskikh i ermitovykh form v teorii otdeleniya kornei algebraicheskikh uravnenii (The Method of Symmetric and Hermitian Forms in the Theory of Separation of the Roots of Algebraic Equations), Kharkov, 1936.Google Scholar
  6. 6.
    Ikramov, Kh.D. and Savel’eva, N.V., On Efficient Computer Algebra Implementation of the Schur-Cohn-Fujiwara Criterion,Vestn. Mosk. Univ., Ser. 15: Vyschisl. Mat. Kibern., 1998, no. 2, pp. 9–12.MathSciNetGoogle Scholar
  7. 7.
    Savel’eva, N.V., Computer Algebra Procedures for Separating the Roots of Algebraic Equations,Zh. Vychisl. Mat. Mat. Fiz., 1999, vol. 39, no. 10, pp. 1603–1619.MathSciNetGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2000

Authors and Affiliations

  • Kh. D. Ikramov
    • 1
  • N. V. Savel’eva
    • 1
  1. 1.Department of Computational Mathematics and CyberneticsMoscow State UniversityMoscowRussia

Personalised recommendations