Instruments and Experimental Techniques

, Volume 43, Issue 4, pp 566–569 | Cite as

An automated device for manufacturing microneedles of iterated shape

  • S. V. Zaitsev
  • A. V. Karpov
Laboratory Techniques


A computer-controlled device allows for obtaining metallic microneedles with a vertex radius of ∼10 nm from wire bars by using the electropolishing technique. The microneedles have a highly reproducible shape and a nondisturbed interior microstructure of bars. The essence of the method consists in terminating the process at an optimal instant determined from the time dependence of the electric current by using a computer program. The microneedles obtained are utilized as point electron sources, samples in field-emission microscopy, and indenters in tunneling microscopy.


Control Electronic Unit Electron Holography Field Ionization Mass Spectrometry Optimal Instant Etching Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nenakalivaemye katody (Nonfilament Cathodes), Shrednik, V.N., Ed., Moscow: Sov. Radio, 1974.Google Scholar
  2. 2.
    Forbes, R.G.,Appl. Surf. Sci., 1995, vol. 87/88, p. 1.CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    Mikhailovskii, I.M., Poltinin, P.Ya., and Fedorova, L.I.,Fiz. Met. Metalloved., 1983, vol. 56, no. 1, p. 186.Google Scholar
  4. 4.
    Nagaev, E.L.,Usp. Fiz. Nauk, 1992, vol. 162, no. 9, p. 49.CrossRefGoogle Scholar
  5. 5.
    Bakai, A.S.,Pis'ma Zh. Tekh. Fiz., 1983, vol. 9, no. 24, p. 1477.Google Scholar
  6. 6.
    Beckey, H.D.,Principles of Field Ionization and Field Desorption Mass-Spectrometry, Oxford: Pergamon, 1977.Google Scholar
  7. 7.
    Tonomura, A.,Electron Holography, Heidelberg: Springer, 1993.Google Scholar
  8. 8.
    Tonomura, A., Matsuda, T., and Endo, J.,Hippon Kessho Gakkaishi, 1986, vol. 22, p. 263.Google Scholar
  9. 9.
    Tsong, T.T.,Phys. Today, 1993, no. 4, p. 24.Google Scholar
  10. 10.
    Suvorov, A.L.,Avtoionnaya mikroskopiya (Field Ion Microscopy), Moscow: Energoatomizdat, 1982.Google Scholar
  11. 11.
    Edel'man, V.S.,Prib. Tekh. Eksp., 1989, no. 5, p. 25.Google Scholar
  12. 12.
    Verkin, B.I.,Priroda, 1983, no. 10, p. 18.Google Scholar
  13. 13.
    Beitman, J.,Atom. Tekh. Rubezh., 1986, no. 6, p. 29.Google Scholar
  14. 14.
    Nicolaescu, D.,Appl. Surf. Sci., 1995, vol. 87/88, p. 61.CrossRefADSGoogle Scholar
  15. 15.
    Tatsuo, I., Kap-Soon S.,Appl. Surf. Sci., 1995, vol. 87/88, p. 31.CrossRefGoogle Scholar
  16. 16.
    Gnatyuk, S.P., Grishin, N.N., and Labintsev, V.B.,Prib. Tekh. Eksp., 1985, no. 6, p. 201.Google Scholar
  17. 17.
    Davies, G. and James, A.,A Dictionary of Electrochemistry, London: Macmillam, 1976. Translated under the titleElektrokhimicheskii slovar', Moscow: Mir, 1979.Google Scholar
  18. 18.
    Muller, E.W. and Tsong, T.T.,Field Ion Microscopy, Elsevier, New York: 1969. Translated under the titleAvtoionnaya mikroskopiya, Moscow: Metallurgiya, 1972.Google Scholar
  19. 19.
    Fridman, V.Ya.,Prib. Tekh. Eksp., 1974, no. 1, p. 227.Google Scholar
  20. 20.
    Freiberg, G.N.,Prib. Tekh. Eksp., 1972, no. 4, p. 244.Google Scholar
  21. 21.
    Walls, J.M., Southworth, N.M., and Rushton, B.J.,Vacuum, 1975, vol. 24, no. 10, p. 475.CrossRefGoogle Scholar
  22. 22.
    Givargizov, E.I.,Rost nitevidnykh i plastinchatykh kristallov iz para (Growth of Filamentary and Scaly Crystals from Vapor), Moscow: Nauka, 1972.Google Scholar
  23. 23.
    Hiroshi, A., Hideaki, N., and Michitsuqu, K.,Appl. Surf. Sci., 1994, vol. 76/77, p. 11.CrossRefGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2000

Authors and Affiliations

  • S. V. Zaitsev
    • 1
  • A. V. Karpov
    • 1
  1. 1.Institute of Theoretical and Experimental Physics State Research CenterMoscowRussia

Personalised recommendations