Russian Journal of Developmental Biology

, Volume 31, Issue 2, pp 106–112 | Cite as

About possible functional interaction between serotonin and neuropeptides in control processes of embryogenesis (Experiments on embryos ofTritonia diomedea)

  • A. O. D. Willows
  • L. A. Nikitina
  • V. V. Bezuglov
  • N. M. Gretskaya
  • G. A. Buznikov
Experimental Embryology


Ritanserin and inmecarb hydrochloride, antagonists of serotonin, act cytostatically and teratogenically on early embryos ofTritonia diomedea, a nudibranch mollusk. On the basis of a pharmacological analysis and the type of developmental abnormalities observed, this action appears to be due to disturbances in the functional activity of endogenous serotonin and is associated with damage to the cytoskeleton. The effects of ritanserin and inmecarb are prevented or attenuated by lipophilic serotonin analogs (serotoninamides of polyenoic fatty acids), as well as by polypeptides isolated from neurons Pd5 and Pd6 of the pedal ganglia of the adultTritonia. In late embryos (stage of veligers), serotonin and to a lesser extent its lipophilic analogs strongly increase embryonic motility. This effect of serotonin is potentiated by some neuropeptides and inhibited by others. These results provide evidence for functional interaction between serotonin and neuropeptides in the control processes of embryogenesis.

Key words

serotonin serotoninamides of fatty acids neuropeptides identified neurons cleavage divisions embryonic motility Tritonia diomedea 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Apa, R., Lanzone, A., Mastrandrea, M.,et al., Effect of Pituitary Adenylate Cyclase-Activating Peptide on Meiotic Maturation in Follicle-Enclosed, Cumulus-Enclosed, and Denuded Rat Oocytes,Biol. Reprod., 1997, vol. 57, no. 5 pp. 1074–1079.PubMedCrossRefGoogle Scholar
  2. Bakalkin, G.Ya., Yakovleva, T.V., Nikitina, L.A.,et al., Opiate Binding Sites and Endogenous Opioids inBufo viridis Oocytes,Biochem. Biophys. Res. Commun., 1983, vol. 117, no. 3, pp. 718–724.PubMedCrossRefGoogle Scholar
  3. Bernocchi, G., Vignola, C., Scherini, E.,et al, Bioactive Peptides and Serotonin Immunocytochemistry in the Cerebral Ganglia of HibernatingHelix asperse, J. Exper. Zool. 1998, vol. 280, no. 5, pp. 354–367.Google Scholar
  4. Bezuglov, V.V., Manevich, E.M., Archakov, A.V.,et al., Artificially Functionalized Polyenoic Fatty Acids—New Lipid Bioregulators,Bioorgan. Khim., 1997, vol. 23, no. 3, pp. 215–224.Google Scholar
  5. Buznikov, G.A.,Nizkomolekulyarnye regulyatory zarodyshevogo razvitiya (Low-Molecular-Weight Regulators of Embryonic Development), Moscow: Nauka, 1967.Google Scholar
  6. Buznikov, G.A., Neurotransmitters in Embryogenesis, Chur: Harwood Academic, 1990.Google Scholar
  7. Buznikov, G.A., Shmukler, Yu.B., Lauder, J.M., From Oocyte to Neuron: Do Neurotransmitters Function in the Same Way throughout Development?,Cell. Mol. Neurobiol., 1996, vol. 16, no. 4, pp. 532–559.Google Scholar
  8. Buznikov, G.A., Shmukler, Yu.B., and Lauder, J.M., Changes in the Physiological Role of Neurotransmitters in the Course of Individual Development,Ros. Fiziol. Zh., 1997, vol. 83, no. 10, pp. 1–15.Google Scholar
  9. Carnevali, M.D.C., Bonasoro, F., Inveroizzi, R.,et al., Tissue Distribution of Monoamine Neurotransmitters in Normal and Regenerating Arms of the Feather StarAntedon mediterranea, Cell Tissue Res., 1996, vol. 285, no. 2, pp. 341–352.CrossRefGoogle Scholar
  10. Church, P.J. and Lloyd, P.E., Expression of Diverse Neuropeptide Cotransmitters by Identified Motor Neurons inAplysia, J. Neurosci., 1991, vol. 11, no. 2, pp. 618–625.PubMedGoogle Scholar
  11. Emanuelsson, H., Localization of Serotonin in Cleavage Embryos ofOphryotrocha labronica, W. Roux’ Arch. Entwicklung, 1974, vol. 175, no. 4, pp. 253–271.CrossRefGoogle Scholar
  12. Fox, L.E., Lloyd, P.E., Serotonin and the Small Cardioactive Peptides Differentially Modulate Two Motor Neurons that Innervate the Same Muscle Fibers inAplysia, J. Neurosci., 1997, vol. 17, no. 15, pp. 6064–6074.PubMedGoogle Scholar
  13. Insel, T.R. and Winslow, J.T., Serotonin and Neuropeptides in Affiliative Behaviors,Biol. Psychiatry, 1998, vol. 44, no. 3, pp. 207–219.PubMedCrossRefGoogle Scholar
  14. Kempfs, C., Page, L.R., and Pires, A., Development of Serotonin-Like Immunoreactivity in the Embryos and Larvae of Nudibranch Mollusks with Emphasis on the Structure and Possible Function of the Apical Sensory Organ,J. Comp. Neurol., 1997, vol. 386, no. 3, pp. 507–528.CrossRefGoogle Scholar
  15. Khan, H.R., Price, D.A., Doble, K.E.,et al., FMRFamide-Related Peptides, Partial Serotonin Depletion, and Osmoregulation inHelisoma duryi (Mollusca: Pulmonata),J. Comp. Neurol., 1998, vol. 30, no. 1, pp. 25–33.CrossRefGoogle Scholar
  16. Koshtoyants, Kh.S., Buznikov, G.A., and Manukhin, B.N., The Possible Role of 5-Hydroxytryptamine in the Motor Activity of Embryos of Some Marine Gastropods,Comp. Biochem. Physiol., 1961, vol. 3, no. 1, pp. 20–26.PubMedGoogle Scholar
  17. Lloyd, P.E. and Connolly, C.E., Sequence of Pedal Peptide: A Novel Neuropeptide from the Central Nervous System ofAplysia, J. Neurosci., 1989, vol. 9, no. 1, pp. 312–317.PubMedGoogle Scholar
  18. Lloyd, P.E., Phares, G.A., Phillips, N.E., and Willows, A.O.D., Purification and Sequencing of Neuropeptides from Identified Neurons in the Marine Mollusc,Tritonia, Peptides, 1996, vol. 17, pp. 17–23.CrossRefGoogle Scholar
  19. Pendleton, R.G., Rasheed, A., Roychowdhury, R., and Hillman, R.A., New Role for Catecholamines: Ontogenesis,Trends Pharmacol. Sci., 1998, vol. 19, no. 7, pp. 248–251.PubMedCrossRefGoogle Scholar
  20. Reale, V., Ashford, M.L., and Barnard, E.A., Vasoactive Intestinal Peptide (VIP) Induces a K+ Current in theXenopus Oocyte Membrane,Neurosci. Lett., 1987, vol. 83, no. 1, pp. 89–94.PubMedCrossRefGoogle Scholar
  21. Reich, G., Doble, K.E., Price, D., and Greenberg, M.J., Effects of Cardioactive Peptides on Myocardial cAMP Levels in the SnailHelix aspersa, Peptides, 1997, vol. 18, pp. 355–360.PubMedCrossRefGoogle Scholar
  22. Sugita, S., Baxter, D.A., and Byrne, J.H., Modulation of a cAMP/Protein Kinase A Cascade by Protein Kinase C in Sensory Neurons ofAplysia, J. Neurosci., 1997, vol. 17, no. 19, pp. 7237–7744.PubMedGoogle Scholar
  23. Turlejski, K., Evolutionary Ancient Roles of Serotonin. Long-Lasting Regulation of Activity and Development,Acta Neurobiol. Exper., 1996, vol. 56, no. 2, pp. 619–636.Google Scholar
  24. Vilim, F.S., Cropper, E.C., Price, D.A.,et al., Release of Peptide Cotransmitters inAplysia: Regulation and Functional Implications,J. Neurosci., 1996, vol. 16, no. 20, pp. 8105–8114.PubMedGoogle Scholar
  25. Weiss, E.R., Maness, P., and Lauder, J.M., Why Do Neurotransmitters Act Like Growth Factors?,Perspect. Devel. Neurobiol., 1998, vol. 5, no. 4, pp. 323–335.Google Scholar
  26. Wessler, I., Kirkpatrick, C.J., and Racke, K., The Cholinergic “Pitfall”: Acetylcholine, a Universal Cell Molecule in Biological Systems, Including Humans,Clin. Exper. Pharmacol. Physiol., 1999, vol. 26, no. 3, pp. 198–205.CrossRefGoogle Scholar
  27. Willows, A.O.D., Pavlova, G.A., and Phillips, N.E., The Effect of Neuropeptides and Serotonin on the Activity of Cilia,Dokl. Akad. Nauk, 1998, vol. 358, no. 6, pp. 839–841.PubMedGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2000

Authors and Affiliations

  • A. O. D. Willows
    • 2
  • L. A. Nikitina
    • 1
  • V. V. Bezuglov
    • 3
  • N. M. Gretskaya
    • 3
  • G. A. Buznikov
    • 1
  1. 1.Kol’tsov Institute of Developmental BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Washington UniversityWashingtonUSA
  3. 3.Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations