Advertisement

Il Nuovo Cimento A (1965-1970)

, Volume 53, Issue 4, pp 833–840 | Cite as

High-energy assumption and subtraction constants in compton-scattering sum rules

  • W. W. Wada
Article

Summary

Under the assumption that in high-energy limit the forward Compton-scattering amplitude is given by the Born amplitude determined by the interaction of the photon field with the Dirac current of the proton, possible subtraction constants in the sum rules of the Compton scattering are discussed.

Keywords

Compton Scattering Subtraction Constant Born Amplitude Pauli Form Factor Unsubtracted Dispersion Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Предположение высоких энергий и вычитательные константы в правилах сумм для комптоновского рассеяния

Резюме

При предположении, что в пределе высоких энергий амплитуда комптоновского рассеяния вперёд даётся борновской амплитудой, определённой посредством взаимодействия фотонного поля с дираковским током протона, обсуждаются возможные вычитательные константы в правилах сумм для комптоновского рассеяния.

Riassunto

Nell’ipotesi che al limite delle alte energie l’ampiezza dello scattering di Compton in avanti sia data dall’ampiezza di Born, determinata dall’interazione del campo dei fotoni con la corrente di Dirac del protone, si discutono possibili costanti di sottrazione nelle regole di somma dello scattering di Compton.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    N. Cabibbo andL. A. Radicati:Phys. Lett.,19, 697 (1966).ADSCrossRefGoogle Scholar
  2. (2).
    K. Kawarabayashi andM. Suzuki:Phys. Rev.,150, 1181 (1966).ADSCrossRefGoogle Scholar
  3. (3).
    M. A. B. Bég:Phys. Rev. Lett.,17, 333 (1966);Phys. Rev.,150, 1276 (1966).ADSCrossRefGoogle Scholar
  4. (4).
    K. Kawarabayashi andW. W. Wada:Phys. Rev.,152, 1286 (1966).ADSCrossRefGoogle Scholar
  5. (5).
    M. Gell-Mann, M. L. Goldberger andW. Thirring:Phys. Rev.,96, 1433 (1954).ADSMathSciNetCrossRefGoogle Scholar
  6. (6).
    C. K. Iddings:Phys. Rev.,138, B 446 (1965).ADSCrossRefGoogle Scholar
  7. (7).
    See for instanceS. Gasiorowicz:Elementary Particle Physics (New York, 1966).Google Scholar
  8. (8).
    It is interesting to recall thatSuura andSimmons have shown that the equaltime commutator of axial vector currents gives asymptotic form of the bare Born term of a certain forward scattering amplitude, which can be interpreted as the Born amplitude atv=∞ with the renormalized vector coupling constant. (H. Suura andL. M. Simmons Jr.:Phys. Rev. Lett.,16, 598 (1966).ADSCrossRefGoogle Scholar
  9. (9).
    F. Buccella, G. Veneziano andR. Gatto:Nuovo Cimento,42, 1019 (1966);M. Gourdin: Orsay TH/127 (1966);V. N. Gribov, B. L. Ioffe andV. M. Shekhter:Phys. Lett.,21, 457 (1966);G. Kramer andK. Meetz: DESY 66/8 (1966).ADSCrossRefGoogle Scholar
  10. (10).
    S. Fubini:Nuovo Cimento,43, 475 (1966).ADSCrossRefGoogle Scholar
  11. (11).
    R. E. Kallosh:Phys. Lett.,22, 519 (1966).ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1968

Authors and Affiliations

  • W. W. Wada
    • 1
  1. 1.International Atomic Energy AgencyInternational Centre for Theoretical PhysicsTrieste

Personalised recommendations