The Indian Journal of Pediatrics

, Volume 73, Issue 11, pp 1019–1026 | Cite as

NEC: Part 2: Toward improving mucosal barrier defenses: rhG-CSF plus IgG antibody

  • Aryeh Simmonds
  • Edmund F. LaGamma
Symposium: Neonatology-I Evidence and Experience in Neonatal Medicine


Epithelial cell functions ultimately define the ability of the extremely low birth weight human fetus to survive outside of the uterus. These specialized epithelial cell capacities manage all human interactions with theex utero world including: (i) lung mechanics, surface chemistry and gas exchange, (ii) renal tubular balance of fluid and electrolytes, (iii) barrier functions of the intestine and skin for keeping bacteria out and water in, plus enabling intestinal digestion, as well as (iv) maintaining an intact neuroepithelium lining of the ventricles of the brain and retina. In Part I of this two part review, the authors describe why the gut barrier is a clinically relevant model system for studying the complex interplay between innate and adaptive immunity, dendritic & epithelial cell interactions, intraepithelial lymphocytes, M-cells, as well as the gut associated lymphoid tissues where colonization after birth, clinician feeding practices, use of antibiotics as well as exposure to prebiotics, probiotics and maternal vaginal flora all program the neonate for a life-time of immune competence distinguishing “self” from foreign antigens. These barrier defense capacities become destructive during disease processes like necrotizing enterocolitis (NEC) when an otherwise maturationally normal, yet dysregulated and immature, immune defense system is associated with high levels of certain inflammatory mediators like TNFα. In Part II the authors discuss the rationale for why rhG-CSF has theoretical advantages in managing NEC or sepsis by augmenting neonatal neutrophil number, neutrophil expression of Fcλ and complement receptors, as well as phagocytic function and oxidative burst. rhG-CSF also has potent anti-TNFα functions that may serve to limit extension of tissue destruction while not impairing bacterial killing capacity. Healthy, non-infected neutropenic and septic neonates differ in their ability to respond to rhG-CSF; however, no neonatal clinical trials to date have identified a clear clinical benefit of rhG-CSF therapy. This manuscript will review the literature and evidence available for identifying the ideal subject for cytokine treatment using NEC as the model disease target.

Key words

Necrotizing enterocolitis Neonatal sepsis TNFα Systemic inflammatory response syndrome 0264 0152 V 2 Cytokines 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    La Gamma EF, Browne, LE. Feeding practices for infants less than 1,500 G at birth and the pathogenesis of necrotizing enterocolitis.Clin Perinatol 1994; 21: 271–306.PubMedGoogle Scholar
  2. 2.
    Martin C, Walker Wa. Intestinal immune defenses and the inflammatory response in necrotizing enterocolitis.Semin Fetal Neonatal Med 2006; e-pub: 1–9.Google Scholar
  3. 3.
    Neu J, Chen M, Beierle E. Intestinal innate immunity: how does it relate to the pathogenesis of necrotizing enterocolitis?Semin Pediatr Surg 2005; 14: 137–144.PubMedCrossRefGoogle Scholar
  4. 4.
    Bourlioux P, Koletzko B, Guarner Fet al. The intestine and its microflora are partners for the protection of the host: report on the Danone Symposium: The Intelligent Intestine,” held in Paris, June 14 2002.Am J Clin Nutr 2003; 78: 675–683.PubMedGoogle Scholar
  5. 5.
    Hooper L, Gordon J. Commensal host-bacterial relationships in the gut.Science 2001; 292: 1115–1118.PubMedCrossRefGoogle Scholar
  6. 6.
    Sanderson I. The physicochemical environment of the neonatal intestine.Am J Clin Nutr 1999; 69: 1028S-1034S.PubMedGoogle Scholar
  7. 7.
    Cartlidge P. The epidermal barrier.Semin Neonatol 2000; 5: 273–280.PubMedCrossRefGoogle Scholar
  8. 8.
    Kunzelmann K, McMorran B. First encounter: how pathogens compromise epithelial transport.Physiology 2004; 19: 240–244.PubMedCrossRefGoogle Scholar
  9. 9.
    Markel TA, Crisistomo PR, Wairiuko GMet al. Cytokines in necrotizing enterocolitis.Shock 2006; 25 (4): 329–337.PubMedCrossRefGoogle Scholar
  10. 10.
    Morecroft JA, Spitz L, Hamilton PAet al. Plasma cytokine levels in necrotizing enterocolitis.Acta Paediatr Suppl 1994; 396: 18–20.PubMedCrossRefGoogle Scholar
  11. 11.
    Edelson M, Bagwell C, Rozycki H. Circulating pro and counterinflammatory cytokine levels and severity in NEC.Pediatrics 1999; 103: 766–771.PubMedCrossRefGoogle Scholar
  12. 12.
    Ledbetter D & Juul S. Necrotizing enterocolitis and hematopoietic cytokines.Clin Perinatol 2000; 27 (3): 697–716PubMedCrossRefGoogle Scholar
  13. 13.
    Halpern M, Holubec H, Dominguez Jet al. Up-regulation of Il-18 and Il-12 in the ileum of neonatal rats with necrotizing enterocolitis.Pediatr Res 2002; 51 (6): 733–739.PubMedGoogle Scholar
  14. 14.
    Caplan M, Dyan S, Jilling T. The role of PAF, TLR and the inflammatory response in neonatal necrotizing enterocolitis.Semin Pediatr Surg 2005; 14: 145–151.PubMedCrossRefGoogle Scholar
  15. 15.
    Ford H. Mechanism of nitric oxide-mediated intestinal barrier failure: insight into the pathogenesis of necrotizing enterocolitis.J Pediatr Surg 2006; 41: 294–299.PubMedCrossRefGoogle Scholar
  16. 16.
    Halpern MD, Holubec H, Dominguez JAet al. Hepatic inflammatory mediators contribute to intestinal damage in necrotizing enterocolitis.Am J Physiol Gastrointest Liver Physiol 2003; 284 (4): G695–702. Epub 2003 Jan 15PubMedGoogle Scholar
  17. 17.
    Halpern MD, Clark JA, Saunders TAet al. Reduction of experimental necrotizing enterocolitis with anti-TNF-alpha.Am J Physiol Gastrointest Liver Physiol 2006; 290 (4): G757–64. Epub 2005 Nov 3PubMedCrossRefGoogle Scholar
  18. 18.
    Adan D, La Gamma EF, Browne LE. Nutritional management and the multisystem organ failure/systemic inflammatory response syndrome in critically ill preterm neonates.Crit Care Clin 1995; 11 (3): 751–770.PubMedGoogle Scholar
  19. 19.
    Wheeler AP, Bernard GR. Current concepts: treating patients with severe sepsis.N Engl J Med 1999; 340: 207–214.PubMedCrossRefGoogle Scholar
  20. 20.
    Morecroft JA, Spitz L, Hamilton PAet al. Necrotizing enterocolitis—multisystem organ failure of the newborn?Acta Paediatr Suppl 1994; 396: 21–23.PubMedGoogle Scholar
  21. 21.
    Ahmad M, Fleit HB, Golightly MGet al. In vivo effect of recombinant human granulocyte colony-stimulating factor on phagocytic function and oxidative burst activity in septic neutropenic neonates.Biol Neonate 2004; 86 (1): 48–54, Epub 2004 Mar 30.PubMedCrossRefGoogle Scholar
  22. 22.
    LaGamma EF, DeCastro MH. What is the rationale for the use of granulocyte and granulocyte-Macrophage colonystimulating factors in the neonatal intensive care unit.Acta Pediatr Suppl 2002; 438: 109–116.CrossRefGoogle Scholar
  23. 23.
    Kocherlakota P, La Gamma EF. rhG-CSF reduces the incidence of sepsis in preeclampsia-associated neonatal neutropenia.Pediatrics 1998; 102: 1107–1111.PubMedCrossRefGoogle Scholar
  24. 24.
    Kocherlakota P, La Gamma EF. Human Granulocyte Colonystimulating Factor May Improve Outcome Attributable to Neonatal Sepsis Complicated by Neutropenia.Pediatrics 1997; 100 (1): e6.PubMedCrossRefGoogle Scholar
  25. 25.
    Hartung T, Doecke WD, Bundschuh Det al. Effect of filgrastim treatment on inflammatory cytokines and lymphocyte functions.Clin Pharmacol Ther 1999; 66(4): 415–424.PubMedCrossRefGoogle Scholar
  26. 26.
    Kocherlakota P, LaGamma EF, Ahmad Met al. Neonatal Sepsis- An Unsolved Problem. In Morstyn G, Dexter TM, eds.Filgrastim (r-meltHu G-CSF) in Clinical Practice. Inc., NY, Marcel Dekker 1998; 469–490.Google Scholar
  27. 27.
    Kocherlakota P, LaGamma EF, Breen Cet al. Effects of rhG-CSf on Neutrophil Fcy and Complement Receptors. In Bellanti, JA, Bracci, R, Prindull, G. Xanthou, M, eds.Ventilated Very Low Birth Weight Human Neonates in Neonatal Hematology and Immunology III. Elsevier Science B.V 1997; 39–48.Google Scholar
  28. 28.
    Droussou-Agakidou V, Kanakoudi-Tsakalidou F, Sarafidis K,et al. Administration of recombinant human granulocyte colony stimulating factor to septic neonates induces neutrophilia and enhances the neutrophil respiratory burst and {ie75-1} integrin expression. Results of a randomized controlled trial.Eur J Pediatr 1998; 157: 583–588.CrossRefGoogle Scholar
  29. 29.
    Barak Y, Leibovitz E, Mogilner Bet al. The in vivo effect of recombinant human granulocyte-colony stimulating factor in neutropenic neonates with sepsis.Eur J Pediatr 1997; 156: 643–646.PubMedCrossRefGoogle Scholar
  30. 30.
    Kucukoduk S, Sezer T, Yildiran Aet al. Randomized, double-blinded, placebo-controlled trial of early administration of recombinant human granulocyte colony-stimulating factor to non-neutropenic preterm newborns between 33 and 36 weeks with presumed sepsis.Scand J Infect Dis 2002; 34: 893–897.PubMedCrossRefGoogle Scholar
  31. 31.
    Kocherlakota, P, Vakkalankam, R, Crow MK, LaGamma, EF: Effect of Human Granulocyte Colony Stimulating Factor (rhG-CSF) on Cytokines in VLBW Neonates.Ped. Research 1998; 44 (4): A1044.Google Scholar
  32. 32.
    Hartung T, Docke WD, Ganter Fet al. Effect of granulocyte colony-stimulating factor treatment on ex vivo blood cytokine response in human volunteers.Blood 1995; 85 (9): 2482–2489.PubMedGoogle Scholar
  33. 33.
    Knapp S, Hareng L, Rijneveld AWet al. Activation of neutrophils and inhibition of the proinflammatory cytokine response by endogenous granulocyte colony-stimulating factor in murine pneumococcal pneumoniaJ Infect Dis 2004; 189 (8): 1506–15. Epub 2004 Mar 29PubMedCrossRefGoogle Scholar
  34. 34.
    Alpan O, La Gamma EF, Parker RI. Can treatment with recombinant granulocyte colony-stimulating factor transform neutropenia into leukemia?J Pediatr 1995; 127 (5): 845.PubMedGoogle Scholar
  35. 35.
    Ahmad A, Laborada G, Bussel Jet al. Comparison of recombinant granulocyte colony-stimulating factor, recombinant human granulocyte-macrophage colonystimulating factor and placebo for treatment of septic preterm infants.Pediatr Infect Disease J 2002; 21: 1061–1065.CrossRefGoogle Scholar
  36. 36.
    Marshall J. The effects of granulocyte colony-stimulating factor in preclinical models of infection and acute inflammation.Shock 2005; 24 (Suppl 1): 120–129.PubMedCrossRefGoogle Scholar
  37. 37.
    Schaefer H, Engert A, Grass Get al. Perioperative granulocyte colony-stimulating factor does not prevent severe infections in patients undergoing esophagectomy for esophageal cancer: a randomized placebo-controlled clinical trial.Ann Surg 2004; 240 (1): 68–75PubMedCrossRefGoogle Scholar
  38. 38.
    Schneider C, von Aulock S, Zedler Set al. Perioperative recombinant human granulocyte colony-stimulating factor (Filgrastim) treatment prevents immunoinflammatory dysfunction associated with major surgery.Ann Surg 2004; 239(1): 75–81.PubMedCrossRefGoogle Scholar
  39. 39.
    Pajkrt D, Manten A, van der Pollet al. Modulation of Cytokine Release and Neutrophil Function by Granulocyte Colony-Stimulating Factor During Endotoxemia in Humans.Blood 1997; 90(4): 1415–1424.PubMedGoogle Scholar
  40. 40.
    Ishikawa K, Tanaka H, Matsouka Tet al. Recombinant human granulocyte colony-stimulating factor attenuates inflammatory responses in septic patients with neutropenia.J Trauma 1998; 44(6): 1047–1054.PubMedGoogle Scholar
  41. 41.
    Pollmacher T, Korth C, Mullington Jet al. Effects of granulocyte colony-stimulating factor on plasma cytokine and cytokine receptor levels and the in vivo host response to endotoxin in healthy men.Blood 1996; 87(3): 900–905.PubMedGoogle Scholar
  42. 42.
    Harada M, Qin Y, Takano Het al. G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes.Nat Med 2005; 11(3): 305–311.PubMedCrossRefGoogle Scholar
  43. 43.
    Komine-Kobayashi M, Zhang N, Liu Met al. Neuroprotective effect of recombinant human granulocyte colony-stimulating factor in transient focal ischemia of mice.J Cereb Blood Flow Metab 2006; 26(3): 402–413.PubMedCrossRefGoogle Scholar
  44. 44.
    Meuer K, Pitzer C, Teismann Pet al. Granulocyte-colony stimulating factor is neuroprotective in a model of Parkinson’s disease.J Neurochem 2006; 97(3): 675–686, Epub 2006 Mar 29PubMedCrossRefGoogle Scholar
  45. 45.
    Hartung T, von Aulock S, Schneider Cet al. How to leverage an endogenous immune defense mechanism: The example of granulocyte colony-stimulating factor.Crit Care Med 2003; 31(Suppl 1): S65-S75PubMedCrossRefGoogle Scholar
  46. 46.
    LaGamma EF, Welch W, Jeffs R. A multicenter, double-blind, randomized, placebo-controlled safety & efficacy study of filgrastim (rHu-Gcsf) in the treatment of late-onset neonatal sepsis.Pediatr Res 2000; 47(4): A2421Google Scholar
  47. 47.
    Carr R, Modi N, Doré C. G-CSF and GM-CSF for treating or preventing neonatal infections.The Cochrane Database of Systematic Reviews 2003; 3: CD003066Google Scholar
  48. 48.
    Wolkoff LI, Levine CR, Koo HCet al. Effects of granulocyte colony-stimulating factor on hyperoxia-induced lung injury in newborn piglets.Lung 2002; 180(4): 229–239.PubMedCrossRefGoogle Scholar
  49. 49.
    Miura E, Procianoy RS, Bittar C, Miura CS, Melo C, Miura MS, Assessing the efficacy of the recombinant human granulocyte colony-stimulating factor “rhG-CSF” in the treatment of early neonatal sepsis in premature neonates.J Pediatr (Rio J). 2000; 76(3): 193–139.Google Scholar
  50. 50.
    Bernstein HM, Pollock BH, Calhoun DAet al. Administration of recombinant granulocyte colony-stimulating factor to neonates with septicemia: A meta analysis.J Pediatr 2001; 138(6): 917–920.PubMedCrossRefGoogle Scholar
  51. 51.
    Canpolat FE, Yurdakok M, Korkmaz Aet al. Enteral granulocyte colony stimulating factor for the treatment of mild (stage I) necrotizing enterocolitis: a placebo-controlled pilot study.Pediatr Surg 2006; 41(6): 1134–1138.CrossRefGoogle Scholar
  52. 52.
    Boneberg EM, Hartung T. Molecular aspects of antiinflammatory action of G-CSF.Inflamm Res 2002; 51: 119–128.PubMedCrossRefGoogle Scholar
  53. 53.
    Stoll BJ. Epidemiology of necrotizing enterocolitis.Clin Perinatol 1994; 21: 205–219.PubMedGoogle Scholar
  54. 54.
    Kliegman RM, Fanaroff AA. Neonatal necrotizing enterocolitis.N Engl J Med 1984; 31: 1093–1103.CrossRefGoogle Scholar
  55. 55.
    Bell MJ, Ternber JL, Feigin RDet al. Neonatal necrotizing enterocolitis. Therapeutic decisions based upon clinical staging.Ann Surg 1978; 187(1): 1–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Kleigman RM, Walsh MC. Neonatal necrotizing enterocolitis: pathogenesis, classification and spectrum of disease.Curr Prob Pediatr 1987; 17: 213.Google Scholar
  57. 57.
    Ballow M, Cates KL, Rowe JCet al. Development of the immune system in very low birthweight (less than 1500 g) premature infants: concentrations of plasma immunoglobulins and patterns of infection.Pediatr Res 1986; 20(9): 899–904.PubMedCrossRefGoogle Scholar
  58. 58.
    Fujiwara T, Taniuchi S, Hattori Ket al. Effect of immunoglobulin therapy on phagocytosis by polymorphonuclear leucocytes in whole blood of neonates.Clin Exp Immunol 1997; 107(3): 435–439.PubMedCrossRefGoogle Scholar
  59. 59.
    Suri M, Harrison L, Van de Ven Cet al. Immunotherapy in the prophylaxis and treatment of neonatal sepsis.Curr Opin Pediatr 2003; 15: 155–160.PubMedCrossRefGoogle Scholar
  60. 60.
    Ohlsson A, Lacy JB. Intravenous immunoglobulin for preventing infection in preterm and/or low-birth-weight infants.The Cochrane Database of Systematic Reviews 2004; 1: CD000361.Google Scholar
  61. 61.
    Alejandria MM, Lansang MA, Dans LF, Mantaring JBV. Intravenous immunoglobulin for treating sepsis and septic shock.The Cochrane Database of Systematic Reviews 2002; 1: CD001090Google Scholar
  62. 62.
    Nelson S, Belknap SM, Carlson RWet al. A randomized controlled trial of filgrastim as an adjunct to antibiotics for treatment of hospitalized patients with community acquired pneumonia. CAP Study Group.J Infect Dis 1998; 178(4): 1075–1080.PubMedGoogle Scholar
  63. 63.
    Schaefer H, Hubel K, Bohlen Het al. Perioperative treatment with filgrastim stimulates granulocyte function and reduces infectious complications after esophagectomy.Ann Heamatol 2000; 79: 143–151.CrossRefGoogle Scholar

Copyright information

© Dr.K C Chaudhuri Foundation 2006

Authors and Affiliations

  1. 1.The Division of Newborn Medicine, The Regional Neonatal Center, Maria Fareri Children’s Hospital of Westchester Medical CenterNew York Medical CollegeValhalla

Personalised recommendations