Advertisement

Journal of Fluorescence

, Volume 7, Issue 3, pp 185–193 | Cite as

Surfactant fluorescence in the study of aggregation and clouding

  • Matthew E. McCarroll
  • Ray von Wandruszka
Article

Abstract

The intrinsic fluorescence of Triton X-114 and Igepal CO-630 was used to monitor the aggregation behavior of micellar solutions of these surfactants. The response to changes in surfactant concentration, increases in temperature up to and beyond the cloud point, and addition of an ionic surfactant (SDS) was monitored. The intrinsic fluorescence was used to measure aggregate anisotropy as a function of SDS concentration and temperature. Relative aggregate abundance showed a minimum at the CMC, confirming the existence of premicellar assemblies. Structural differences in the hydrophobic portions of the two nonionic surfactants led to vastly different packing in their aggregates. The addition of SDS produced smaller, more closely packed micelles.

Key Words

Surfactant fluorescence aggregation cloud point fluorescence anisotropy mixed surfactants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Grieser and C. J. Drummond (1988)J. Phys. Chem. 92, 5580–5593.CrossRefGoogle Scholar
  2. 2.
    R. von Wandruszka (1992)Crit. Rev. Anal. Chem. 23, 187–215.CrossRefGoogle Scholar
  3. 3.
    G. Komaromy-Hiller and R. von Wandruszka (1995)J. Phys. Chem. 99, 1436–1441CrossRefGoogle Scholar
  4. 4.
    D. Myers (1992)Surfactant Science and Technology, 2nd ed, VCH, New York.Google Scholar
  5. 5.
    S. Ikeda and G. D. Fasman (1970)J. Polym. Sci. 8, 991–1001.Google Scholar
  6. 6.
    J. R. Lakowicz (1983)Principles of Fluorescence Spectroscopy, Plenum Press, New York, p. 112.Google Scholar
  7. 7.
    R. Perrin (1926)J. Phys. Radium 7, 390.CrossRefGoogle Scholar
  8. 8.
    J. R. Lakowicz,Principles of Fluorescence Spectroscopy, Plenum Press, New York, Chap. 5.Google Scholar
  9. 9.
    K. Kalyanasundaram (1987)Photochemistry in Microheterogeneous Systems, Academic Press, Orlando, FL, p. 194.Google Scholar
  10. 10.
    H. Schott, A. E. Royce, and S. K. Han (1984)J. Colloid Interface Sci. 98, 196–201.CrossRefGoogle Scholar
  11. 11.
    B. S. Valaulikar and C. Manohar (1985)J. Colloid Interface Sci. 108, 403–406.CrossRefGoogle Scholar
  12. 12.
    M. Corti and C. Minero (1984)J. Phys. Chem. 88, 309–317.CrossRefGoogle Scholar
  13. 13.
    L. Marszall (1988)Langmuir 4, 90–93.CrossRefGoogle Scholar
  14. 14.
    W. L. Hinze and E. Pramauro (1993)Crit. Rev. Anal. Chem. 24, 133–177.CrossRefGoogle Scholar
  15. 15.
    G. G. Guilbault (1990)Practical Fluorescence, 2nd ed., Marcel Dekker, New York, p. 14.Google Scholar
  16. 16.
    D. Myers,Surfactant Science and Technology, 2nd ed, VCH, p. 91.Google Scholar
  17. 17.
    T. T. Ndou and R. von Wandruszka (1990)J. Luminesc. 46, 33–38.CrossRefGoogle Scholar
  18. 18.
    D. Myers,Surfactant Science and Technology, 2nd ed, VCH, p. 232.Google Scholar
  19. 19.
    J. R. Lakowicz,Principles of Fluorescence Spectroscopy, Plenum Press, New York, p. 133.Google Scholar
  20. 20.
    G. Komaromy-Hiller and R. von Wandruszka (1996)Colloid Interface Sci. 177, 156–161.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Matthew E. McCarroll
    • 1
  • Ray von Wandruszka
    • 1
  1. 1.Department of ChemistryUniversity of IdahoMoscow

Personalised recommendations