Advertisement

Il Nuovo Cimento A (1965-1970)

, Volume 68, Issue 3, pp 369–382 | Cite as

The B-meson andT-violation in radiative π decay

  • B. R. Holstein
Article

Summary

It is shown that Kim and Primakoff’s suggestion that second-class axial vector currents are present in the semi-leptonic weak Hamiltonian leads toT-violating effects in π+→ℓ+vγ. Using Maiani’s model for these currents and dominating them by the B-meson, we estimate the size of possibleT-violating effects. Theoretical predictions are compared with current experimental evidence.

Реэюме

Покаэывается, что предположение Кима и Примакова о том, что аксиально-векторные токи второго класса присутствуют в полулептонном слабом Гамильтониане, приводит к Эффектам T-нарущения в π+→ℓ+vγ. Йспольэуя модель Майани для Этих токов и их доминантность, благодаря В-меэону, мы оцениваем величину воэможных Эффектов Г-нарущения. Теоретические предскаэания сравниваются с Эксперинментальным подтверждением токов.

Keywords

Dispersion Relation Transverse Polarization Axial Vector Current Bjorken Limit Bremsstrahlung Contribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

B-меэон иT-нарущение в радиационном π-распаде

Riassunto

Si dimostra che il suggerimento di Kim e Primakoff che le correnti vettoriali assiali della seconda classe siano presenti nella hamiltoniana debole semileptonica porta a risultati che violanoT in π+→ℓ+vγ. Usando il modello di Maiani per queste correnti e dominandole col mesone B, si calcola l’ordine di grandezza degli effetti che violanoT. Si confrontano le previsioni teoriche con i dati sperimentali sulle correnti.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    C. W. Kim andH. Primakoff:Phys. Rev.,180, 1502 (1969).ADSCrossRefGoogle Scholar
  2. (2).
    M. T. Burgy, V. E. Krohn, T. B. Novey, G. R. Ringo andV. L. Telegdi:Phys. Rev.,120, 1829 (1960).ADSCrossRefGoogle Scholar
  3. (3).
    This feature has been previously pointed out byN. Cabibbo, ref. (1).ADSCrossRefGoogle Scholar
  4. (4).
    L. Maiani:Phys. Lett.,26 B, 538 (1968).ADSMathSciNetCrossRefGoogle Scholar
  5. (5).
    B. R. Holstein:Phys. Rev.,177, 2417 (1969).ADSCrossRefGoogle Scholar
  6. (6).
    J. L. Gervais, J. Iliopoulos andJ. M. Kaplan:Phys. Lett.,20, 432 (1966).ADSCrossRefGoogle Scholar
  7. (7).
    S. Weinberg andH. Schnitzer:Phys. Rev.,164, 1828 (1967).ADSCrossRefGoogle Scholar
  8. (9).
    S. Brown andG. West:Phys. Rev.,168, 1605 (1968).ADSCrossRefGoogle Scholar
  9. (10).
    S. Brown andG. West:Phys. Rev.,174, 1777 (1968).ADSCrossRefGoogle Scholar
  10. (11).
    J. D. Bjorken:Phys. Rev.,148, 1467 (1966).ADSCrossRefGoogle Scholar
  11. (12).
    As shown in ref. (10), vanishing of the second of these commutators is assured in the quark model, since it possesses isospin zero, and in the usual algebra of fields, wherein the chiral symmetry breaking part of the Lagrangian is minimal in that it does not depend onF µva= µ V va − ∂ v V µa.ADSCrossRefGoogle Scholar
  12. (13).
    S. Weinberg:Phys. Rev. Lett.,18, 507 (1967).ADSCrossRefGoogle Scholar
  13. (14).
    S. Brown andG. West:Phys. Rev.,180, 1613 (1969).ADSCrossRefGoogle Scholar
  14. (15).
    P. Horwitz andP. Roy:Phys. Rev.,180, 1430 (1969).ADSCrossRefGoogle Scholar
  15. (16).
    We have defined, as in ref. (15).ADSCrossRefGoogle Scholar
  16. (17).
    J. Ballam, A. D. Brody, G. B. Chadwick, D. Fries, Z. A. T. Guiragossián, W. B. Johnson, R. R. Larsen, D. W. G. S. Leith, F. Martin, M. Perl, E. Pickup andT. H. Tan:Phys. Rev. Lett.,21, 934 (1968).ADSCrossRefGoogle Scholar
  17. (18).
    K. Kawarabayashi andM. Suzuki:Phys. Rev. Lett.,16, 255 (1966).ADSMathSciNetCrossRefGoogle Scholar
  18. (19).
    J. S. Vaishya:Phys. Rev.,173, 1757 (1968).ADSCrossRefGoogle Scholar
  19. (21).
    The vanishing of the latter commutation relation is again based on a minimal coupled model, as explained in ref. (12). Such a result must follow if we impose strict PCAC, so that µ A µ behaves as a canonical field.ADSCrossRefGoogle Scholar
  20. (22).
    A Rosenfeld:Rev. Mod. Phys.,40, 77 (1968).ADSCrossRefGoogle Scholar
  21. (23).
    From ref. (22), we haveΓ B→πρ/Γ B→πω < 1.5%.ADSCrossRefGoogle Scholar
  22. (24).
    S. Brown andG. West:Phys. Rev.,174, 1777 (1968).ADSCrossRefGoogle Scholar
  23. (25).
    V. G. Vaks andB. L. Ioffe:Nuovo Cimento,10, 342 (1958).CrossRefGoogle Scholar
  24. (26).
    D. Neville:Phys. Rev.,124, 2037 (1961).ADSMathSciNetCrossRefGoogle Scholar
  25. (27).
    G. von Dardel, D. Dekkers, R. Mermod, J. D. Van Putten, M. Vivargent, G. Weber andK. Winter:Phys. Lett.,4, 51 (1963).ADSCrossRefGoogle Scholar
  26. (28).
    P. Depommier, J. Heintze, C. Rubbia andV. Soergel:Phys. Lett.,7, 285 (1963).ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1970

Authors and Affiliations

  • B. R. Holstein
    • 1
  1. 1.Princeton UniversityPrinceton

Personalised recommendations