Inorganic Materials

, Volume 36, Issue 5, pp 479–483 | Cite as

Influence ofF centers on the optical and adsorptive properties of doped ZrO2 crystals

  • V. V. Sal’nikov


The optical and adsorptive properties of Y2O3-stabilized (10 mol %) cubic ZrO2 crystals reduced in a hydrogen atmosphere at 1473 K for 3 and 5 h were studied by ellipsometry. The optical constantsn, k, ε l , andε 2 were determined from the ellipsometric parameters measured in the temperature range 297 to 623 K in vacuum. The optical constants were found to depend on the reduction time, obviously due to changes in oxygen stoichiometry. CO2 adsorption on the surface of the crystal reduced for 3 h was studied in the range 523–623 K. At CO2 pressures of ≤2 kPa, the amount of adsorption was found to rise with temperature. The thickness of the surface layer disturbed by CO2 adsorption attained 260 Å at 623 K.F + centers are assumed to act as active surface sites.


Oxygen Vacancy Optical Constant Yttria Stabilize Zirconia Oxygen Stoichiometry Ellipsometric Parameter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aleksandrov, V.I., Kalabukhova, V.F., Lomonova, E.E.,et al., Effects of Impurities and Annealing Conditions on the Optical Properties of ZrO2 and HfO2 Single Crystals,Izv. Akad. Nauk SSSR, Neorg. Mater, 1977, vol. 13, no. 12, pp. 2192–2196.Google Scholar
  2. 2.
    Aleksandrov, V.I., Abramov, N.A., Vishnyakova, M.A.,et al., High-Temperature Disproportionation of Cubic Zirconia Single Crystals,Izv. Akad. Nauk SSSR, Neorg. Mater., 1983, vol. 19, no. 1, pp. 100–103.Google Scholar
  3. 3.
    Aleksandrov, V.I., Batygov, R.Kh., Vishnyakova, M.A.,et al., Effects of Composition and Heat Treatment on the Charge States of Native Defects and Impurities in ZrO2-Y2O3 Solid Solutions,Fiz. Tverd. Tela (Leningrad), 1984, vol. 26, no. 5, pp. 1313–1318.Google Scholar
  4. 4.
    Nagle, D.C., PaiVerneker, V.R., Petelin, A.N., and Groff, G., Optical Absorption Colored Crystals of Yttria-Stabilized Zirconia,Mater. Res. Bull, 1989, vol. 24, no. 5, pp. 619–623.CrossRefGoogle Scholar
  5. 5.
    PaiVerneker, V.R., Petelin, A.N., Crowne, F.J., and Nagle, D.C., Color-Center-Induced Band-Gap Shift in Yttria-Stabilized Zirconia,Phys. Rev. B: Condens. Matter, 1989, vol. 40, no. 12, pp. 8555–8557.Google Scholar
  6. 6.
    Thorp, J.S., Aypar, A., and Ross, J.S., Electron Spin Resonance in Single Crystal Yttria Stabilized Zirconia,J. Mater. Sci., 1972, vol. 7, pp. 729–734.CrossRefGoogle Scholar
  7. 7.
    Shinar, J., Tannhauser, D.S., and Silver, B.L., ESR Study of Color Centers in Yttria Stabilized Zirconia,Solid State Commun., 1985, vol. 56, no. 2, pp. 221–223.CrossRefGoogle Scholar
  8. 8.
    Etsell, T.H. and Flengas, S.N., The Electrical Properties of Solid Oxide Electrolytes,Chem. Rev. (Washington, D.C.), 1970, vol. 70, no. 3, pp. 339–376.CrossRefGoogle Scholar
  9. 9.
    Sal’nikov, V.V., Ellipsometric Studies of the Surface Reaction between Oxygen and (100) Single-Crystal Silver,Poverkhnost, 1995, vol. 1, p. 29.Google Scholar
  10. 10.
    Aleksandrov, V.I., Yal’yano, G.E., Lukin, B.E.,et al., Structure of Stabilized Zirconia Single Crystals,Izv. Akad. Nauk SSSR, Neorg. Mater, 1976, vol. 12, no. 2, pp. 273–277.Google Scholar
  11. 11.
    Azzam, R.M. and Bashara, N.M.,Ellipsometry and Polarized Light, Amsterdam: North-Holland, 1977. Translated under the titleEllipsometriya i polyarizovannyi svet, Moscow: Mir, 1981.Google Scholar
  12. 12.
    Lozer, R.V. and Larson, D.T., A Fortran 4 Program for Ellipsometry Measurements of Surface Films,RFT-1392 UC-32 Mathematic and Computer, Dow Chemical., 1968.Google Scholar
  13. 13.
    Osiko, V.V., Shimkevich, A.L., and Shmatko, B.A., An Electronic Model of Cubic Zirconia Single Crystals,Dokl Akad. Nauk SSSR, 1982, vol. 267, no. 2, p. 351.Google Scholar
  14. 14.
    Sobolev, A.B., Khaimenov, A.P., Varaksin, A.N., and Keda, O.A., Energy-Band Structure of ZrO2-Y2O3 Solid Electrolytes and the Charge State of Vacancies, inIonnyi i elektronnyi perenos v tverdofaznykh sistemakh (Ionic and Electronic Transport in Solid Electrolytes), Sverdlovsk, 1992, pp. 17–35.Google Scholar
  15. 15.
    Sobolev, A.B., Varaksin, A.N., Keda, O.A., and Khaimenov, A.P., Electronic Structure and Charge State of Oxygen Vacancies in Perfect ZrO2 Crystals,Phys. Status Solidi B, 1990, vol. 162, pp. 165–171.CrossRefGoogle Scholar
  16. 16.
    Levy, M., Fouletier, J., and Kleitz, M., Model for Electrical Conductivity of Reduced Stabilized Zirconia,J. Electrochem. Soc., 1988, vol. 135, pp. 1584–1589.CrossRefGoogle Scholar
  17. 17.
    Wolfram, T., Kraut, E.A., and Morin, F.J.,d-Band Surface States on Transition-Metal Perovskite Crystals: 1. Qualitative Features and Application to SrTiO3,Phys. Rev. B: Solid State, 1973, vol. 7, no. 4, pp. 1677–1694.Google Scholar
  18. 18.
    Wolfram, T., Two-Dimensional Character of the Conduction Bands ofd-Band Perovskites,Phys. Rev. Lett., 1972, vol. 29, no. 20, pp. 1383–1387.CrossRefGoogle Scholar
  19. 19.
    Morin, F.J. and Wolfram, T., Surface States and Catalysis ond-Band Perovskites,Phys. Rev. Lett., 1973, vol. 30, no. 24, pp. 1214–1217.CrossRefGoogle Scholar
  20. 20.
    Tret’yakov, N.E., Pozdnyakov, D.V., Oranskaya, O.M., and Filimonov, V.N., IR Spectroscopic Study of the Adsorption of Some Molecules on Zirconia,Zh. Fiz. Khim., 1970, vol. 44, no. 4, pp. 1077–1083.Google Scholar
  21. 21.
    Fukuda, Y. and Tanabe, K., Infrared Study of Carbon Dioxide on Magnesium and Calcium Oxides,Bull. Chem. Soc. Jpn., 1973, vol. 46, no. 6, pp. 1616–1619.CrossRefGoogle Scholar
  22. 22.
    Kondo, J., Abe, H., Sakata, Y.,et al., Infrared Studies of Adsorbed Species of H2, CO, and CO2 over ZrO2,J. Chem. Soc., Faraday Trans. 1, 1988, vol. 84, no. 2, p. 511.CrossRefGoogle Scholar
  23. 23.
    Novotny, J., Sloma, M., and Weppner, W., Surface Reactivity of Yttria-Doped Zirconia with Oxygen,Solid State Ionics, 1989, vol. 32/33, pp. 709–713.CrossRefGoogle Scholar
  24. 24.
    Leonov, A.I., Kostikov, Yu.P., and Ivanov, I.K., On the Nature of the Electrical Transport in ZrO2-Y2O3 Solid Solutions,Izv. Akad. Nauk SSSR, Neorg. Mater., 1980, vol. 16, no. 9, pp. 1576–1579.Google Scholar
  25. 25.
    Ezin, A., Tsidilkovski, V.I., and Kurumchin, E.Kh., Isotopic Exchange and Diffusion: Bulk and Subsurface Diffusivities,Solid State Ionics, 1996, vol. 84, pp. 105–112.CrossRefGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2000

Authors and Affiliations

  • V. V. Sal’nikov
    • 1
  1. 1.Institute of High-Temperature Electrochemistry, Ural DivisionRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations