Israel Journal of Mathematics

, Volume 20, Issue 2, pp 165–177 | Cite as

Sofic systems

  • Ethan M. Coven
  • Michael E. Paul


A symbolic flow is called a sofic system if it is a homomorphic image (factor) of a subshift of finite type. We show that every sofic system can be realized as a finite-to-one factor of a subshift of finite type with the same entropy. From this it follows that sofic systems share many properties with subshifts of finite type. We concentrate especially on the properties of TPPD (transitive with periodic points dense) sofic systems.


Normal Form Zeta Function Periodic Point Finite Type Homomorphic Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. L. Alder and B. Weiss,Similarity of automorphisms of the torus, Mem. Amer. Math. Soc. No. 98, Amer. Math. Soc., Providence, R. I., 1970.Google Scholar
  2. 2.
    R. Bowen,Topological entropy and axiom A, Global Analysis, Proc. Sympos. Pure Math.XIV, Berkeley, Calif. (1968), 23–41. Amer. Math. Soc., Providence, R. I., 1970.Google Scholar
  3. 3.
    R. Bowen,Markov partitions and minimal sets for Axiom A diffeomorphisms, Amer. J. Math.92 (1970), 907–918.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    R. Bowen,Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc.153 (1971), 401–414.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    R. Bowen,Symbolic dynamics for hyperbolic flows, Amer. J. Math.95 (1973), 429–459.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    R. Bowen and O. E. Lanford III,Zeta functions and restrictions of the shift transformation, Global Analysis, (Proc. Sympos. Pure Math.XIV, Berkeley, Calif., 1968), 43–49. Amer. Math. Soc., Providence, R. I., 1970.Google Scholar
  7. 7.
    E. M. Coven and M. E. Paul,Endomorphisms of irreducible subshifts of finite type, Math. Systems Theory8 (1974), 167–175.CrossRefMathSciNetGoogle Scholar
  8. 8.
    F. Gantmacher,The theory of matrices, vol. II, Chelsea, New York, 1959.MATHGoogle Scholar
  9. 9.
    G. A. Hedlund,Mappings on sequence spaces (Part I), Comm. Research Div. Technical Report No. 1, Princeton, N. J., Feb. 1961.Google Scholar
  10. 10.
    G. A. Hedlund,Endomorphisms and automorphisms of the shift dynamical system, Math. Systems Theory3 (1969), 320–375.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    A. Manning,Axiom A diffeomorphisms have rational zeta functions, Bull. London Math. Soc.3 (1971), 215–220.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    W. Parry,Intrinsic Markov chains, Trans. Amer. Math. Soc.112 (1964), 55–66.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    S. Smale,Differentiable dynamical systems, Bull. Amer. Math. Soc.73 (1967), 747–817.MathSciNetGoogle Scholar
  14. 14.
    B. Weiss,Intrinsically ergodic systems, Bull. Amer. Math. Soc.76 (1970), 1266–1269.MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    B. Weiss,Subshifts of finite type and sofic systems, Monatsh. Math.77 (1973), 462–474.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© The Weizmann Science Press of Israel 1975

Authors and Affiliations

  • Ethan M. Coven
    • 1
    • 2
  • Michael E. Paul
    • 1
    • 2
  1. 1.Wesleyan UniversityMiddletownU.S.A.
  2. 2.University of Maryland, Baltimore CountyBaltimoreU.S.A.

Personalised recommendations