Israel Journal of Mathematics

, Volume 16, Issue 2, pp 198–202 | Cite as

SeparableL 1 preduals are quotients ofC(Δ)

  • W. B. Johnson
  • M. Zippin


It is proved that every separable predual space of anL 1 space is a quotient space ofC(Δ).


Banach Space Unit Ball Quotient Space Real Banach Space Studia Math 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Benyamini and J. Lindenstrauss,A predual of l 1 which is not isomorphic to a C(K) space, Israel J. Math.13 (1972), 246–254.MathSciNetGoogle Scholar
  2. 2.
    A. J. Lazar and J. Lindenstrauss,On Banach spaces whose duals are L 1 spaces, Israel J. Math.4 (1966), 205–207.MATHMathSciNetGoogle Scholar
  3. 3.
    J. Lindenstrauss and A. Pełcyzński, Absolutely summing operators in pspaces and their applications, Studia Math.29 (1968), 275–326.MATHMathSciNetGoogle Scholar
  4. 4.
    E. A. Michael and A. Pełcyzński,Separable Banach spaces which admit ln/∞-approxima tions, Israel J. Math.4 (1966), 189–198.MATHMathSciNetGoogle Scholar
  5. 5.
    A. Pełczyński,Projections in certain Banach spaces, Studia Math.19 (1960), 209–228.MathSciNetGoogle Scholar
  6. 6.
    H. P. Rosenthal,On factors of C[0, 1] with nonseparable dual, Israel J. Math.13 (1972), 361–378.MathSciNetGoogle Scholar

Copyright information

© The Weizmann Science Press of Israel 1973

Authors and Affiliations

  • W. B. Johnson
    • 1
    • 2
  • M. Zippin
    • 1
    • 2
  1. 1.The Ohio State UniversityColumbusU.S.A.
  2. 2.The Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations