Vertical decomposition in the synthesis of distillation systems

  • I. V. Klenkov
  • V. K. Viktorov


The vertical decomposition method is used to synthesize optimal distillation systems, and its advantages over the integral approach are demonstrated by several examples. The optimality of the system synthesized by the Fenske-Underwood-Gilliland simplified method was checked by using the ASPEN PLUS modeling program.


Heat Exchanger Isobutane Mixed Integer Linear Programming Bender Decomposition Heat Integration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nishida, N., Stephanopolous, G., and Westerberg, A.W., A Review of Process Synthesis,AIChE J., 1981, vol. 27, no. 3, p. 321.CrossRefGoogle Scholar
  2. 2.
    Hendry, J.E. and Hughes, R.R., Generating Separation Process Flowsheets,Chem. Eng. Prog., 1972, vol. 68, no. 6, p. 71.Google Scholar
  3. 3.
    Rathore, R.N.S., Van-Wormer, K.A., and Powers, G.J., Synthesis Strategies for Multicomponent Separation Systems with Energy Integration,AIChE J., 1974, vol. 20, no. 3, p. 491.CrossRefGoogle Scholar
  4. 4.
    Lee, K.F., Masso, A.H., and Rudd, D.F., Branch and Bound Synthesis of Integrated Process Design,Ind. Eng. Chem. Fundam., 1970, vol. 9, p. 48.CrossRefGoogle Scholar
  5. 5.
    Lawler, E.L. and Wood, D.E., Branch and Bound Methods: A Survey,Oper. Res., 1996, vol. 14, no. 4, p. 699.CrossRefGoogle Scholar
  6. 6.
    Westerberg, A.W. and Stephanopolous, G., Branch and Bound Strategy with List Techniques for the Synthesis of Separation Schemes,Chem. Eng. Sci., 1975, vol. 30, no. 2, p. 96.Google Scholar
  7. 7.
    Morari, F. and Faith, D.C., The Synthesis of Distillation Trains with Heat Integration,AIChE J., 1980, vol. 26, no. 5, p. 916.CrossRefGoogle Scholar
  8. 8.
    Benders, J.F., Partitioning Procedures for Solving Mixed Variables Programming Problems,Numer. Math., 1962, vol. 4, no. 3, p. 238.CrossRefGoogle Scholar
  9. 9.
    Floudas, C.A., Aggarwal, A., and Ciric, A.R., Global Optimum Search for Nonconvex NLP and MINLP Problems,Comput. Chem. Eng., 1989, vol. 13, no. 6, p. 1117.CrossRefGoogle Scholar
  10. 10.
    Sahinidis, N.V. and Grossman, I.E., Convergence Properties of Generalized Benders Decomposition,Comput. Chem. Eng., 1991, vol. 15, no. 5, p. 481.CrossRefGoogle Scholar
  11. 11.
    Andrecowich, M.J. and Westerberg, A.W., An MILP Formulation for Heat-Integrated Distillation Sequence Synthesis,AIchE J., 1985, vol. 32, no. 8, p. 1461.CrossRefGoogle Scholar
  12. 12.
    Aggarwal, A. and Floudas, CA., Synthesis of Heat-Integrated Non-Sharp Distillation Sequences,Comput. Chem. Eng., 1992, vol. 16, no. 1, p. 23.Google Scholar
  13. 13.
    Viktorov, V.K., Synthesis of Optimal Large Heat-Exchange Systems,Teor. Osn. Khim. Tekhnol., 1984, vol. 18, no. 5, p. 706.Google Scholar
  14. 14.
    Viktorov, V.K., Combinatorial-Evaluation Method for the Synthesis of Optimum Heat-Exchange Systems from Enthalpy-Temperature Diagrams,Teor. Osn. Khim. Tekhnol., 1993, vol. 27, no. 3, p. 331.Google Scholar
  15. 15.
    Ostrovskii, G.M and Berezhinskii, T.A.,Optimizatsiya khimiko-tekhnologicheskikh protsessov. Teoriya i praktika (Optimization of Chemical Processes: Theory and Practice), Moscow: Khimiya, 1984.Google Scholar
  16. 16.
    Horst, R. and Tuy, H.,Global Optimization, Berlin: Springer, 1995.Google Scholar
  17. 17.
    Reid, R.C., Prausnitz, L.M., and Sherwood, T.K.,The Properties of Gases and Liquids, New York: McGrawHill, 1977.Google Scholar
  18. 18.
    ASPEN PLUS, Cambridge: Aspen Tech. Inc., 1996.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2000

Authors and Affiliations

  • I. V. Klenkov
    • 1
  • V. K. Viktorov
    • 1
  1. 1.St. Petersburg Technological Institute (Technical University)St. PetersburgRussia

Personalised recommendations