Russian Journal of Electrochemistry

, Volume 36, Issue 9, pp 926–933 | Cite as

Effect of light on the poly-3-phenylthiophene properties

  • O. A. Semenikhin
  • M. R. Erenburg
  • E. V. Ovsyannikova
  • N. M. Alpatova
  • O. N. Efimov
  • M. Yu. Belov
  • Yu. V. Kondrashov
  • V. E. Kazarinov


The electrochemical and photoelectrochemical behavior of a conducting polymer, poly-3-phenylthiophene (P3PhT), is studied in acetonitrile containing salts of tetrabutylammonium (TBA) and lithium. Like other thiophene polymers, P3PhT may or may not be doped cathodically in the presence of salts of TBA or lithium, respectively. In general, the photoelectrochemical behavior of P3PhT resembles that of polybithiophene and poly-3-methylthiophehe. In particular, P3PhT is photoactivated when exposed to light at negative potentials. Depending on the system in which measurements are taken (in the presence of salts of lithium or TBA), P3PhT undergoes photoelectrochemical undoping or photoelectrochemical cathodic doping, respectively, which is confirmed by measuring electrochemical impedance. However, the photoelectrochemical processes on P3PhT (at least in solutions containing lithium salts) proceed much slower than those on other thiophene polymers we studied earlier. The concentration of doping ions in P3PhT in the presence of lithium salts is higher than that in the presence of TBA salts even in the undoped state. This is due to a specific interaction between Li+ and the phenyl group in P3PhT.


Lithium Salt Lithium Cation Wide Potential Range Polymer Electrode Photoelectrochemical Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Semenikhin, O.A., Ovsyannikova, E.V., Alpatova, N.M.,et al., Elektrokhimiya, 1994, vol. 30, p. 739.Google Scholar
  2. 2.
    Semenikhin, O.A., Ovsyannikova, E.V., Alpatova, N.M.,et al.,Mendeleev Commun., 1997, no. 4, p. 147.Google Scholar
  3. 3.
    Elrashiedy, O.A. and Holdcroft, S.,J. Phys. Chem., 1996, vol. 100, p. 5481.CrossRefGoogle Scholar
  4. 4.
    Miquelino, F.L.C., Depaoli, M.A., and Genies, E.M.,Synth. Met., 1994, vol. 68, p. 91.CrossRefGoogle Scholar
  5. 5.
    Morgenstern, T. and Konig, U.,Synth. Met., 1994, vol. 67, p. 263.CrossRefGoogle Scholar
  6. 6.
    Abrantes, L.M. and Correia, J.P.,Electrochim. Acta, 1996, vol. 41, p. 1747.CrossRefGoogle Scholar
  7. 7.
    Peramunage, D., Tomkiewicz, M., and Ginley, D.S.,J. Electrochem. Soc., 1987, vol. 134, p. 1384.CrossRefGoogle Scholar
  8. 8.
    Stoeckert, D., Kessel, R., and Schultze, J.W.,Synth. Met., 1991, vol. 41, p. 1295.CrossRefGoogle Scholar
  9. 9.
    Micaroni, L., Dini, D., Decker, F., and Depaoli, M.A.,Electrochim. Acta, 1998, vol. 44, p. 753.CrossRefGoogle Scholar
  10. 10.
    Morgenstern, T., Konig, U., and Schultze, J.W.,Mater. Sci. Forum, 1995, vol. 191, p. 213.CrossRefGoogle Scholar
  11. 11.
    Semenikhin, O.A., Ovsyannikova, E.V., Alpatova, N.M., and Rotenberg, Z.A.,J. Electroanal. Chem., 1996, vol. 408, p. 67.CrossRefGoogle Scholar
  12. 12.
    Semenikhin, O.A., Ovsyannikova, E.V., Alpatova, N.M.,et al., J. Electroanal. Chem., 1999, vol. 463, p. 190.CrossRefGoogle Scholar
  13. 13.
    Smie, A. and Heinze, J.,Angew. Chem. Int. Ed. Engl., 1997, vol. 36, p. 363.CrossRefGoogle Scholar
  14. 14.
    Vorotyntsev, M.A., Heinze, J., and Vieil, E.,J. Electroanal Chem., 1998, vol. 450, p. 121.CrossRefGoogle Scholar
  15. 15.
    Zotti, G., Schiavon, G., and Zecchin, S.,Synth. Met., 1995, vol. 72, p. 275.CrossRefGoogle Scholar
  16. 16.
    Krylov, V.A., Konoshchuk, N.V., and Pokhodenko, V.D.,Elektrokhimiya, 1993, vol. 29, p. 1013.Google Scholar
  17. 17.
    Krylov, V.A., Konoshchuk, N.V., and Pokhodenko, V.D.,Elektrokhimiya, 1993, vol. 29, p. 1174.Google Scholar
  18. 18.
    Alpatova, N.M., Ovsyannikova, E.V., and Kazarinov, V.E.,Elektrokhimiya, 1997, vol. 33, p. 36.Google Scholar
  19. 19.
    Broun, A.S. and Voronkov, M.G.,Zh. Obshch. Khim., 1947, vol. 17, p. 1162.Google Scholar
  20. 20.
    Semenikhin, O.A., Jiang, L., Iyoda, T.,et al., Synth. Met., 2000, vol. 110, p. 195.CrossRefGoogle Scholar
  21. 21.
    Mastragostino, M. and Soddu, L.,Electrochim. Acta, 1990, vol. 35, p. 463.CrossRefGoogle Scholar
  22. 22.
    Kaneto, K., Yoshino, K., and Inuishi, J.,Jpn. J. Appl. Phys., 1983, vol. 22, p. L567.CrossRefGoogle Scholar
  23. 23.
    Alpatova, N.M., Ovsyannikova, E.V., and Kazarinov, V.E.,Elektrokhimiya, 1998, vol. 34, p. 83.Google Scholar
  24. 24.
    Pokhodenko, V.D., Krylov, V.A., and Konoshchuk, N.V.,Synth. Met., 1999, vol. 99, p. 91.CrossRefGoogle Scholar
  25. 25.
    Alpatova, N.M., Semenikhin, O.A., Ovsyannikova, E.V.,et al., Elektrokhimiya, 2000, vol. 36, p. 1045.Google Scholar
  26. 26.
    Onoda, M., Nakayama, H., Monta, S., and Yoshino, K.,J. Appl. Phys., 1993, vol. 73, p. 2859.CrossRefGoogle Scholar
  27. 27.
    Vorotyntsev, M.A., Badiali, J.P., and Vieil, E.,Electrochim. Acta, 1996, vol. 41, p. 1375.CrossRefGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2000

Authors and Affiliations

  • O. A. Semenikhin
    • 1
  • M. R. Erenburg
    • 1
  • E. V. Ovsyannikova
    • 1
  • N. M. Alpatova
    • 1
  • O. N. Efimov
    • 1
    • 2
  • M. Yu. Belov
    • 1
    • 2
  • Yu. V. Kondrashov
    • 1
    • 3
  • V. E. Kazarinov
    • 1
  1. 1.Frumkin Institute of ElectrochemistryRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Problems of Chemical PhysicsRussian Academy of SciencesMoscow oblastRussia
  3. 3.Institute of Physical ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations