Differential Equations

, Volume 36, Issue 10, pp 1529–1537 | Cite as

Analytic solution of the fragmentation equation by methods of the theory of adjoint equations

  • P. B. Dubovskii
Integral and Integro-Differential Equations


Original Equation Fragmentation Function Basic Relation Adjoint Equation Hilbert Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Melzak, Z.A.,Trans. Amer. Math, Soc., 1957. vol. 85, pp. 547–560.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Dubovskii, P.B. and Stewart, I.W.,Math. Methods Appl. Sci., 1996, vol. 19, pp. 571–591.CrossRefMathSciNetGoogle Scholar
  3. 3.
    Arinshtein, A.E. and Mezhikovskii, S.M.,Khim. Fizika, 1997, vol. 16, no. 5, pp. 122–133.Google Scholar
  4. 4.
    Barrow, J.D.,J. Phys. A: Math, Gen., 1981, vol. 14, pp. 729–733.CrossRefMathSciNetGoogle Scholar
  5. 5.
    Ziff, R.M. and MeGrady, E.D.,J. Phys. A: Math. Gen., 1985, vol. 18, pp. 3027–3037.CrossRefGoogle Scholar
  6. 6.
    Martynov, M.M. and Muller, V.M.,Dokl. Akad. Nauk SSSR, 1972, vol. 207, no. 2, pp. 370–373.Google Scholar
  7. 7.
    Martynov, M.M. and Muller, V.M..Dokl. Akad, Nauk SSSR, 1972, vol. 207, no. 5, pp. 1161–1164.Google Scholar
  8. 8.
    MeLaughlin, D.J., Lamb, W.. and McBride, A.C.,SIAM J. Math, Anal, 1997. vol. 28, no. 5, pp. 1158–1172.CrossRefMathSciNetGoogle Scholar
  9. 9.
    McLaughlin, D.J., Lamb, W., and McBride, A.C.,Math, Methods Appl. Sci., 1997, vol. 20, no. 15, pp. 1313–1323.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Latyshev, A.V. and Yushkanov, A.A.,Teoret, i Mat. Fizika, 1995, vol. 103, no. 2, pp. 299–311.Google Scholar
  11. 11.
    Marchuk, G.I.,Sopryazhennye uravneniya i analiz slozhnykh sistem (Adjoint Equations and Analysis of Complicated Systems), Moscow. 1992.Google Scholar
  12. 12.
    Marchuk, G.I., Agoshkov, V.I., and Shutyaev, V.P.,Sopryazhennye uravneniya i metody vozmushchenii v nelineinykh zadachakh matematicheskoi fiziki (Adjoint Equations and Perturbation Method in Nonlinear Problem of Mathematical Physics), Moscow, 1993. The translation in English is published by CRC, 1996.Google Scholar
  13. 13.
    Vladimirov, V.S. and Volovich, I.V.,Dokl. Akad. Nauk SSSR, 1984, vol. 279, no. 4, pp. 843–847.MathSciNetGoogle Scholar
  14. 14.
    Sobolev, S.L.,Uravneniya matematicheskoi fiziki (Equations of Mathematical Physics), Moscow, 1966.Google Scholar
  15. 15.
    Gradshtein, I.S. and Ryzhik, I.M.,Tablitsy integralov, summ, ryadov i proizvedenii (Tables of Integrals, Sums, Series, and Products), Moscow, 1963.Google Scholar
  16. 16.
    Abramowitz, M. and Stegun, I.,Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables, New York, 1965. Translated under the titleSpravochnik po spetsial’nym funktsiyam, Moscow, 1979.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2000

Authors and Affiliations

  • P. B. Dubovskii
    • 1
  1. 1.Institute of Numerical MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations