Advertisement

Differential Equations

, Volume 36, Issue 10, pp 1475–1483 | Cite as

Stability of completely controllable systems

  • A. Ya. Narmanov
Ordinary Differential Equations
  • 41 Downloads

Keywords

Vector Field Integral Curve Riemannian Foliation Horizontal Curve Positive Basis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sussmann, H.,Trabs. Amer. Math. Soc., 1973, vol. 180, pp. 171–183.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Petrov, N.N.,Differents. Uravn., 1970, vol. 6, no. 2, pp. 373–374.MATHGoogle Scholar
  3. 3.
    Tamura, I.,The Topology of Foliations, Tokyo: Iwanami Shoten, 1976. Translated under the titleTopologiya sloenii, Moscow: Mir, 1979.Google Scholar
  4. 4.
    Gauthier, J. and Bornard, G.,J. Control and Optimization, 1982, vol. 20, no. 6, pp. 808–814.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Blumenthal, R, and Helda, J.,Quarts. J. Math., 1984, vol. 35, pp. 383–392.MATHCrossRefGoogle Scholar
  6. 6.
    Narmanov, A.Ya.,Differents. Uravn., 1995, vol. 31, no. 4, pp. 597–601.MathSciNetGoogle Scholar
  7. 7.
    Narmanov, A.Ya.,Differents. Uravn., 1983, vol. 19, no. 9, pp. 1627–1629.MathSciNetGoogle Scholar
  8. 8.
    Grasse, K.A.,J. Diff. Equat., 1985, vol. 56, pp. 263–269.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Sussmann, H.,J. Diff. Equat., 1976, vol. 20, pp. 292–315.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Lobri, K., inMatematicheskie metody v teorii sistem (Mathematical Methods in Theory of Systems), Moscow, 1979, pp. 134–173.Google Scholar
  11. 11.
    Narmanov, A.Ya.,Differents. Uravn., 1996, vol. 32, no. 6, pp. 780–783.MathSciNetGoogle Scholar
  12. 12.
    Petrov, N.N.,Vestn. Leningr. Univ., 1974, no. 7, pp. 60–67.Google Scholar
  13. 13.
    Petrov, N.N.,Differents. Uravn., 1968, vol. 4, no. 4, pp. 606–617.MATHGoogle Scholar
  14. 14.
    Grasse, K.A.,J. Diff. Equal., 1984, vol. 53, pp. 387–414.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Postnikov, M.M.,Gladkie mnogoobraziya (Smooth Manifolds), Moscow, 1987.Google Scholar
  16. 16.
    Hartman, Ph.,Ordinary Differential Equations, New York, 1969. Translated under the titleObyknovennye differentsial’nye uravneniya, Moscow, 1970.Google Scholar
  17. 17.
    Kobayashi, Sh. and Nomizu, K.,Foundations of Differential Geometry, New York: Interscience, 1963. Translated under the titleOsnovy differentsial’noi geometrii, Moscow, 1981, vol. 1.MATHGoogle Scholar
  18. 18.
    Petrov, N.N.,Differents. Uravn., 1976, vol. 12, no. 12, pp. 2214–2222.MATHGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2000

Authors and Affiliations

  • A. Ya. Narmanov
    • 1
  1. 1.Tashkent State UniversityTashkentUzbekistan

Personalised recommendations