Advertisement

Russian Journal of Electrochemistry

, Volume 36, Issue 8, pp 879–882 | Cite as

Electrochemical impedance of microelectrodes

  • Z. A. Rotenberg
  • A. V. Dribinskii
  • V. P. Lukovtsev
  • N. S. Khozyainova
Article

Abstract

The influence of the radius (10 <a < 1500 μm) of a Pt disk electrode on the impedance frequency spectrum of the [Fe(CN)6]3-/4- reversible system is studied in the frequency range 5 × 10-3 to 103 Hz. The impedance is calculated by applying the Fourier transform to potential and current pulses of various lengths obtained when imposing a step potential. For electrodes witha < 100 μm, the spectrum in the complex plane has the form characteristic of microelectrodes, while for electrodes of higher radii, it corresponds to a finite Warburg impedance. The main impedance parameters, such as the charge transfer resistance, the diffusion resistance, and the frequency in the maximum of the imaginary constituent are determined. The latter decreases with an increase ina by the lawf* ∼ 1/a2 at lowa and is independent ofa on electrodes witha > 100 μm, which agrees with the impedance theory for microelectrodes

Keywords

Current Pulse Disk Electrode Diffusion Impedance Reversible System Diffusion Layer Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Microelectrodes: Theory and Application, Montenegro, M.I., Queiros, M.A., and Daschbach, J.L., Eds., Dordrecht: Kluwer Academic, 1991.Google Scholar
  2. 2.
    Galus, Z.,Teoretyczne podstawy elektroanalizy chemicznej (Warszawa: Panstwowe Wydawnictwo Naukowe), 1971.Google Scholar
  3. 3.
    Genscher, H.,Z. Phys. Chem., 1951, vol. 198, p. 286.Google Scholar
  4. 4.
    Stoinov, Z.B., Grafov, B.M., Savova-Stoinova, B., and Elkin, V.V.,Elektrokhimicheskii impedans (The Electrochemical Impedance), Moscow: Nauka, 1991.Google Scholar
  5. 5.
    Macdonald, J.R.,Phys. Rev., 1953, vol. 92, p. 4.CrossRefGoogle Scholar
  6. 6.
    Sluyters-Renbach, M., inElectroanalytical Chemistry, Bard, A.J., Ed., New York: Marcel Dekker, 1970, vol. 4, p. 1.Google Scholar
  7. 7.
    Fleischmann, M. and Pons, S.,J. Electroanal. Chem., 1988, vol. 250, p. 277.CrossRefGoogle Scholar
  8. 8.
    Bobov, K.N., Dribinskii, A.V., Lukovtsev, V.P.,et al., Prakt. Protivokorroz, Zashch., 1999, vol. 13, no. 3, p. 61.Google Scholar
  9. 9.
    Rotenberg, Z.A., Dribinskii, A.V., and Lukovtsev, V.P.,Elektrokhimiya, 1999, vol. 35, p. 432.Google Scholar
  10. 10.
    Tanaka, N. and Tamamushi, R.,Electrochim. Acta, 1964, vol. 9, p. 963.CrossRefGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2000

Authors and Affiliations

  • Z. A. Rotenberg
    • 1
  • A. V. Dribinskii
    • 1
  • V. P. Lukovtsev
    • 1
  • N. S. Khozyainova
    • 1
  1. 1.Frumkin Institute of ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations