Advertisement

Israel Journal of Mathematics

, Volume 17, Issue 3, pp 231–240 | Cite as

Regularity of ultrafilters

  • Miroslav Benda
  • Jussi Ketonen
Article

Abstract

If there arek ++ eventually functions fromk + intok or if there arek ++ eventually different functions fromk + then uniform ultrafilters onk + are (k, k +)-regular.

Keywords

Order Type Elementary Substructure Inaccessible Cardinal Singular Cardinal Supercompact Cardinal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Benda,On reduced products and filters, Ann. of Math. Logic4 (1972), 1–29.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    P. Erdös and A. Hajnal,Unsolved problems in set theory, Proc. of Symp. in Pure Math.III (D. Scott. ed.).Google Scholar
  3. 3.
    T. Jech,Some combinatorial problems concerning uncountable cardinals, Ann. of Math. Logic5 (1973), 165–198.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    R. Jensen,Some combinatorial properties of L and V (to appear).Google Scholar
  5. 5.
    M. A. Jorgensen,Images of ultrafilters and cardinality of ultrapowers, Notices Amer. Math. Soc.18 (1971), 826.Google Scholar
  6. 6.
    H. J. Keisler,A survey of ultra-products, Proc. of Int. Congress 1964 (Y. Bar-Hillel, ed.), North-Holland 1965, pp. 112–126.Google Scholar
  7. 7.
    Ketonen,Some combinatorial principles (to appear).Google Scholar
  8. 8.
    D. W. Kueker,Löweheim-Skolem and interpolation theorems in infinitary languages, Bull. Amer, Math. J. Soc.78 (1972), 211–215.MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    K. Prikry,On a problem of Gillman and Keisler, Ann. of Math. Logic,2 (1970), 179–187.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    K. Prikry,On descendingly complete ultrafilters (to appear).Google Scholar
  11. 11.
    A. Tarski,Ideale in vollständigen Mengenkörpen, Fund. Math.23 (1993), 45–63.Google Scholar

Copyright information

© Hebrew University 1974

Authors and Affiliations

  • Miroslav Benda
    • 1
    • 2
  • Jussi Ketonen
    • 1
    • 2
  1. 1.University of WashingtonSeattleUSA
  2. 2.University of CaliforniaBerkeleyUSA

Personalised recommendations