Israel Journal of Mathematics

, Volume 18, Issue 2, pp 141–143 | Cite as

Primitive groups having transitive subgroups of smaller, prime power degree

  • William M. Kantor


The groups in the title are classified, provided they are not too highly transitive.


Prime Power Hall Subgroup Collineation Group Primitive Group Primitive Permutation Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Dembowski,Finite Geometries, Springer, Berlin-Heidelberg-New York, 1968.MATHGoogle Scholar
  2. 2.
    W. M. Kantor,Jordan groups, J. Algebra12 (1969), 471–493.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    T. P. McDonough,On Jordan groups, J. London Math. Soc.6 (1972), 73–80.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    T. P. McDonough,On Jordan groups—addendum, to appear.Google Scholar
  5. 5.
    M. E. O’Nan,The normal structure of the one-point stabilizer of a doubly-transitive permutation group, I, to appear.Google Scholar
  6. 6.
    O. Veblen and J. W. Young,Projective Geometry I, Ginn, Boston, 1910.MATHGoogle Scholar
  7. 7.
    H. Wielandt,Finite Permutation Groups, Academic Press, New York, 1964.MATHGoogle Scholar

Copyright information

© The Weizmann Science Press of Israel 1974

Authors and Affiliations

  • William M. Kantor
    • 1
  1. 1.Department of MathematicsUniversity of OregonEugeneU. S. A.

Personalised recommendations