Advertisement

Microbiology

, Volume 69, Issue 5, pp 536–540 | Cite as

Effect of microelements on the biosynthesis of secondary metabolites by the fungusPenicillium citrinum thom VKM F-1079

  • A. G. Kozlovskii
  • V. P. Zhelifonova
  • N. G. Vinokurova
  • S. M. Ozerskaya
Experimental Articles
  • 112 Downloads

Abstract

Penicillium citrinum VKM F-1079 was found to produce clavine ergot alkaloids and citrinin, a secondaryO-heterocyclic metabolite. Citrinin was produced in the idiophase, whereas the production of ergot alkaloids paralleled fungal growth. The addition of manganese ions to the growth medium stimulated the biosynthesis of both citrinin and ergot alkaloids. Zinc ions stimulated only citrinin synthesis. The presence of these microelements in the growth medium influenced the proportion between the ergot alkaloids synthesized. Copper, manganese, and iron ions slightly affected fungal growth and alkaloid production. The effect of microelements on the main kinetic parameters of growth and alkaloid production was studied.

Key words

fungi physiology secondary metabolites clavine ergot alkaloids citrinin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rehacek, Zd. and Sajdl, Pr.,Ergot Alkaloids, Prague: Academia, 1990, p. 383.Google Scholar
  2. 2.
    Scott, P.E. and Gaucher, G.M., A Manganese Requirement for Patulin Biosynthesis by Cultures ofPenicillium urticae, Biotechnol. Lett., 1984, vol. 6, no. 4, pp. 231–236.CrossRefGoogle Scholar
  3. 3.
    Lovkova, M.Ya., Buzuk, G.N., and Ponomareva, S.M., Molecular-Level Regulation and the Role of Cobalt and Zinc Ions in the Metabolism of Isoquinolines, Indoles, and Tropans,Prikl. Biokhim. Mikrobiol., 1995, vol. 31, no. 1, pp. 80–86.Google Scholar
  4. 4.
    Hughes, M.N. and Poole, R.K.,Metals and Microorganisms, London: Chapman and Hall, 1989, pp. 41–50.Google Scholar
  5. 5.
    Kozlovskii, A.G. and Solov’eva, T.F., Effect of Cultivation Conditions on Alkaloid Biosynthesis inPenicillium kapuscinskii, Mikrobiologiya, 1986, vol. 55, no. 1, pp. 34–40.Google Scholar
  6. 6.
    Kozlovskii, A.G., Vinokurova, N.G., Solov’eva, T.F., and Buzilova, LG., Nitrogen-Containing Secondary Metabolites of Microscopic Fungi,Prikl. Biokhim. Mikrobiol., 1996, vol. 32, no. 1, pp. 43–52.Google Scholar
  7. 7.
    Kozlovskii, A.G., Stefanova-Avramova, L.N., and Reshetilova, T.A., Effect of Cultivation Medium and Culture Age on Alkaloid Biosynthesis inPenicillium gorlenkoanum, Mikrobiologiya, 1981, vol. 50, no. 6, pp. 1046–1052.Google Scholar
  8. 8.
    Betina, V., Citrinin and Related Substances,Mycotoxins: Production, Isolation, Separation and Purification, Betina, V., Ed., Amsterdam: Elsevier, 1984, pp. 217–236.Google Scholar
  9. 9.
    Turner, W.B.,Fungal Metabolites, London: Academic, 1971, p. 446.Google Scholar
  10. 10.
    Stefanova-Avramova, L.N. and Kozlovskii, A.G., Effect of Cultivation Conditions on Alkaloid Biosynthesis inPenicillium gorlenkoanum, Mikrobiologiya, 1984, vol. 53, no. 3, pp. 437–441.Google Scholar
  11. 11.
    Rao, K.K. and Patel, V.P., Effect of Tryptophan and Related Compounds on Alkaloid Formation inAspergillus fumigatus, Lloydia, 1974, vol. 37, pp. 618–622.Google Scholar
  12. 12.
    Rao, K.K., Patel, V.P., and Patel, B., Alkaloid Production ofAspergillus fumigatus as Influenced by Changes in Substrate Composition,Ind. J. Exp. Biol., 1974, vol. 12, no. 1, pp. 76–78.Google Scholar
  13. 13.
    Rosazza, J.P., Kelleher, W.J., and Schwarting, A.E., Production of Lysergic Acid Derivatives in Submerged Culture. IV. Inorganic Nutrition Studies withClaviceps paspali, Appl. Microbiol., 1967, vol. 15, p. 1270.PubMedGoogle Scholar
  14. 14.
    Betina, V., Differentiation and Secondary Metabolism in Some Prokaryotes and Fungi,Folia Microbiol., 1995, vol. 40, no. 1, pp. 51–67.Google Scholar
  15. 15.
    Betina, V., Balini, S., Hajnicka, V., and Nadova, A., Diphasic Production of Secondary Metabolites byPenicillium notatum Westling S-52,Folia Microbiol., 1973, vol. 18, no. 1, pp. 40–48.CrossRefGoogle Scholar
  16. 16.
    Patterson, M.F. and Damoglou, A.P., Conversion of the Mycotoxin Citrinin into Dihydrocitrinone and Ochratoxin A byPenicillium viridicatum, Appl. Microbiol. Biotechnol., 1987, vol. 27, no. 6, pp. 574–578.CrossRefGoogle Scholar
  17. 17.
    Pastrana, L., Loret, M.O., Blanc, P.J., and Goma, G., Production of Citrinin byMonascus ruber Submerged Culture in Chemically Defined Media,Acta Biotechnol., 1996, vol. 16, no. 4, pp. 315–319.CrossRefGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2000

Authors and Affiliations

  • A. G. Kozlovskii
    • 1
  • V. P. Zhelifonova
    • 1
  • N. G. Vinokurova
    • 1
  • S. M. Ozerskaya
    • 1
  1. 1.Skrjabin Institute of Biochemistry and Physiology of MicroorganismsRussian Academy of SciencesRussia

Personalised recommendations