, Volume 69, Issue 3, pp 271–276 | Cite as

Carbon metabolism inSulfobacillus thermosulfidooxidans subsp.asporogenes, strain 41

  • I. A. Tsaplina
  • E. N. Krasil’nikova
  • L. M. Zakharchuk
  • M. A. Egorova
  • T. I. Bogdanova
  • G. I. Karavaiko
Experimental Articles


The activities of carbon metabolism enzymes were determined in cellular extracts of the moderately thermophilic, chemolithotrophic, acidophilic bacteriumSulfobacillus thermosulfidooxidans subsp.asporogenes, strain 41, grown either at an atmospheric content of CO2 in the gas phase (autotrophically, heterotrophically, or mixotrophically) or autotrophically at a CO2 content increased to 5–10%. Regardless of the growth conditions, all TCA cycle enzymes (except for 2-oxoglutarate dehydrogenase), one glyoxylate bypass enzyme (malate synthase), and some carboxylases (ribulose bisphosphate carboxylase, pyruvate carboxylase, and phosphoenolpyruvate carboxylase) were detected in the cell-free extracts of strain 411. During autotrophic cultivation of strains 41 and 1269, the increase in the CO2 content of the supplied air to 5–10% resulted in the activation of growth and iron oxidation, a 20–30% increase in the cellular content of protein, enhanced activity of the key TCA enzymes (citrate synthase and aconitase), and, in strain 41, a decrease in the activity of carboxylases.

Key words

thermoacidophiles growth TCA cycle enzymes carboxylases 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Karavaiko, G.I., Golovacheva, R.S., Pivovarova, T.A., Tsaplina, I. A., and Vartanyan, N.S., Thermophilic Bacteria of the GenusSulfobacillus, Biohydrometallurgy: Proc. Int. Symp., Norris, P.R. and Kelly, D.P., Eds., Kew: Science and Technology Letters, 1988, pp. 29–41.Google Scholar
  2. 2.
    Norris, P.R., Clark, D.A., Owen, J.P., and Waterhouse, S., Characteristics ofSulfobacillus acidophilus sp. nov. and Other Moderately Thermophilic Mineral-Sulfide-oxidizing Bacteria,Microbiology (Reading, UK), 1996, vol. 142, pp. 775–783.Google Scholar
  3. 3.
    Dufresne, S., Bouquet, J., Boissinot, M., and Guay, R.,Sulfobacillus disulfidooxidans sp. nov., a New Acidophilic, Disulfide-oxidizing, Gram-Positive, Spore-forming Bacterium,Int. J. Syst. Bacteriol., 1996, vol. 46, no. 4, pp. 1056–1064.PubMedGoogle Scholar
  4. 4.
    Wood, A.P. and Kelly, D.P., Autotrophic and Mixotrophic Growth of Three Thermoacidophilic Iron-oxidizing Bacteria,FEMS Microbiol. Lett, 1983, vol. 20, pp. 107–112.CrossRefGoogle Scholar
  5. 5.
    Wood, A.P. and Kelly, D.P., Growth and Sugar Metabolism of a Thermoacidophilic Iron-oxidizing Mixotrophic Bacterium,J. Gen. Microbiol., 1984, vol. 130,pp. 1337–1349.Google Scholar
  6. 6.
    Zakharchuk, L.M., Tsaplina, LA., Krasil’nikova, E.N., Bogdanova, T.I., and Karavaiko, G.I., Carbon Metabolism inSulfobacillus thermosulfidooxidans, Mikrobiologiya, 1994, vol. 63, no. 4, pp. 573–580.Google Scholar
  7. 7.
    Vartanyan, N.S., Pivovarova, T.A., Tsaplina, I.A., Lysenko, A.M., and Karavaiko, G.I., A New Thermoacidophilic Bacterium of the GenusSulfobacillus, Mikrobiologiya, 1988, vol. 57, no. 2, pp. 268–274.Google Scholar
  8. 8.
    Severina, L.O., Senyushkin, A.A., and Karavaiko, G.I., The Structure and Chemical Composition of the S-Layer in Representatives of the GenusSulfobacillus, Mikrobiologiya, 1995, vol. 64, pp. 336–340.Google Scholar
  9. 9.
    Krasil’nikova, E.N., Bogdanova, T.I., Zakharchuk, L.M., Tsaplina, I.A., and Karavaiko, G.I., Metabolism of Reduced Sulfur Compounds inSulfobacillus thermosulfidooxidans, Strain 1269,Mikrobiologiya, 1998, vol. 67, no. 2, pp. 156–164.Google Scholar
  10. 10.
    Vartanyan, N.S., Karavaiko, G.I., and Pivovarova, T.A., Effect of Organic Compounds on the Growth and Oxidation of Inorganic Substrates bySulfobacillus thermosulfidooxidans subsp.asporogenes, Mikrobiologiya, 1990, vol. 59, pp. 411–417.Google Scholar
  11. 11.
    Srere, P.A., Citrate Synthase,Methods Enzymol., 1969, vol. 13, pp. 3–11.Google Scholar
  12. 12.
    Miernyk, J.A., Trelease, R.N., and Choinsky, G.S. Malate Synthase Activity in Cotton and Other Ungerminated Oilseeds,Plant Physiol., 1979, vol. 63, no. 6, pp. 1068–1071.PubMedCrossRefGoogle Scholar
  13. 13.
    Dixon, G.H. and Kornberg, H.L., Assay Methods for Key Enzymes of the Glyoxylate Cycle,Biochem. J., 1959, vol. 72, no. l,p. 3P.Google Scholar
  14. 14.
    Krasil’nikova, E.N., Pedan, L.V., Firsov, N.N., and Kondrat’eva, E.N., Tricarboxylic Acid Cycle Enzymes in Various Species of Phototrophic Bacteria,Mikrobiologiya, 1973, vol. 42, no. 6, pp. 995–1000.Google Scholar
  15. 15.
    Romanova, A.K.,Biokhimicheskie metody izucheniya avtotrofii u mikroorganizmov (Biochemical Methods for Studying Autotrophy in Microorganisms), Moscow: Nauka, 1980, pp. 51–133.Google Scholar
  16. 16.
    Tabita, F.R., Molecular and Cellular Regulation of Autotrophic Carbon Dioxide Fixation in Microorganisms,MicrobioL Rev., 1988, vol. 52, no. 2, pp. 155–189.PubMedGoogle Scholar
  17. 17.
    Marsh, R.M. and Norris, P.R., The Isolation of Some Thermophilic, Autotrophic, Iron- and Sulfur-oxidizing Bacteria,FEMS Mkwbiol. Lett., 1983, vol. 17, pp. 311–315.CrossRefGoogle Scholar
  18. 18.
    Dopson, M. and Lindstrom, E.B., Potential Role ofThiobacillus caldus in Arsenopyrite Bioleaching,Appl. Environ. MicrobioL, 1999, vol. 65, no. 1, pp. 36–40.PubMedGoogle Scholar
  19. 19.
    Clark, D.A. and Norris, P.R., Acidophilic Bacteria and Their Activity in Mineral Sulfide Oxidation,Microbial Mineral Recovery, Ehrlich, H.L. and Brierley, C.L., Eds., New York: McGraw-Hill, 1996, pp. 3–27.Google Scholar
  20. 20.
    Clark, D.A. and Norris, PR.,Acidimicrobium ferrooxidans gen. nov., sp. nov.: Mixed-Culture Ferrous Iron Oxidation withSulfobacillus Species,Microbiology (Reading, UK), 1996, vol. 142, pp. 785–790.CrossRefGoogle Scholar
  21. 21.
    Johnson, D.B., Biodiversity and Ecology of Acidophilic Microorganisms,FEMS MicrobioL Ecol., 1998, vol. 27, pp. 307–317.CrossRefGoogle Scholar
  22. 22.
    Karavaiko, G.J., Kovalenko, T.V., and Golovacheva, R.S., Microbiological Aspects of Leaching Copper from Ores,Proc. Int. Conf. on Use of Microorganisms in Hydrometallurgy, Pecs (Hung.), 1980, pp. 95–107.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2000

Authors and Affiliations

  • I. A. Tsaplina
    • 1
  • E. N. Krasil’nikova
    • 2
  • L. M. Zakharchuk
    • 2
  • M. A. Egorova
    • 1
  • T. I. Bogdanova
    • 1
  • G. I. Karavaiko
    • 1
  1. 1.Russian Academy of SciencesInstitute of MicrobiologyMoscowRussia
  2. 2.Department of Microbiology,Biological FacultyMoscow State UniversityMoscowRussia

Personalised recommendations