, Volume 69, Issue 2, pp 167–173 | Cite as

Microbial degradation of cyanide and thiocyanate

  • G. I. Karavaiko
  • T. F. Kondrat’eva
  • E. E. Savari
  • N. V. Grigor’eva
  • Z. A. Avakyan
Experimental Articles


The role played by a bacterial community composed ofPseudomonas putida, strain 21;Pseudomonas stutzeri, strain 18; andPseudomonas sp., strain 5, and by physical and chemical factors in the degradation of CN and SCN was studied. It was shown that the degradation of CN is determined both by the action of bacteria and by abiotic physical and chemical factors (pH, O2, temperature, the medium agitation rate, etc.). The contribution of chemical degradation was found to increase drastically at pH below 9.0; when air was blown through the medium (irrespective of the pH value); under active agitation of the medium; and when the medium surface interfacing air was increased. Even at elevated pH values (9.0-9.2), suboptimal for bacterial growth, the microbial degradation could account for at most 20–25 mg/1 of CN, regardless of its initial concentration. When CN and SCN were concurrently present in the medium, the former compound was the first to be degraded by microorganisms. The rate of bacterial degradation of SCN under continuous cultivation in a chain of reactors was found to depend on its concentration, the medium flow rate, agitation rate, and the pattern of carbon source supply and could exceed 1 g/(l day). CN and SCN are utilized by bacteria solely as nitrogen sources. The mechanism of CN and SCN degradation by the microbial community is discussed.

Key words

cyanide thiocyanate degradation Pseudomonas putida Pseudomonas stutzeri 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Knowles, C.J. and Bunch, A.W., Microbial Cyanide Metabolism,Adv. Microb. Physiol., 1986, vol. 27, pp. 73–111.PubMedGoogle Scholar
  2. 2.
    Smith, A. and Mudder, T.,Chemistry and Treatment of Cyanidation Wastes, London: Mining J. Books, 1991.Google Scholar
  3. 3.
    Dubey, S.K. and Holmes, D.S., Biological Cyanide Destruction by Microorganisms,Wld. J. Microbiol. Biotechnol., 1995, vol. 11, pp. 257–265.CrossRefGoogle Scholar
  4. 4.
    Wong-Chong, G.M., Biological Degradation of Cyanide in Complex Industrial Wastewaters,Biohydrometallurgy-89, Salley, J.et al., Eds., CANMET8p89-10,1989, pp. 289–300.Google Scholar
  5. 5.
    Gomez, N.C.M., Camardos, E.R.S., Dras, J.C.T., Figureira, M.M., and Linardi, V.R., Preliminary Studies on Metal and Cyanide Removal byAspergillus niger, Biohydrometallurgical Processing, Jerez, C.A.et al, Eds., Chile, 1995, vol. 2, pp. 401–405.Google Scholar
  6. 6.
    Ul’berg, Z.R., Podol’skaya, V.I., Sanakulov, K.S., Vember, V.E., Grishchenko, N.I., and Garbara, S.V., Cyanide Degradation by a Culture ofPseudomonas fluorescens VKM B-5040,Prikl. Biokhim. Mikrobiol, 1994, vol. 30, no. 2, pp. 260–264.Google Scholar
  7. 7.
    Podol’skaya, V.I., Ul’berg, Z.R., Shpak, V.E., Grishchenko, N.I., and Yakubenko, L.N., Decomposition of a Silver Cyanide Complex by a Culture ofPseudomonas fluorescens VKM B-5040,Prikl. Biokhim. Mikrobiol., 1994, vol. 30, no. 1, pp. 73–77.Google Scholar
  8. 8.
    Babu, G.R.V., Wolfram, J.H., and Chapatuala, K.D., Degradation of Inorganic Cyanides by ImmobilizedPseudomonas putida Cells,Biohydrometallurgical Technologies, Torma, A.E.et al, Eds., Jackson Hole, 1993, vol. II, pp. 159–165.Google Scholar
  9. 9.
    Whitlock, J.L., Biological Detoxification of Precious Metal Processing Wastewaters,Geomicrobiol. J., 1990, vol. 8, no. 3/4, pp. 241–249.CrossRefGoogle Scholar
  10. 10.
    Grigor’eva, N.V., Avakyan, Z.A., Turova, T.P., Kondrat’eva, T.F., and Karavaiko, G.I., The Search for and Study of Microorganisms That Degrade Cyanides and Thiocyanates,Mikrobiologiya, 1999, vol. 68, no. 4, pp. 453–460.Google Scholar
  11. 11.
    Zelenov, V.I.,Metodika issledovaniya rud (Methods for Investigation of Ores), Moscow: Nauka, 1989, pp. 124–126.Google Scholar
  12. 12.
    Gamil’ton, E.M., y∈Rukovodstvo po tsianirovaniyu zolotykh i serebryanykh rud (A Manual for Cyanidation of Gold and Silver Ores), Moscow: Tsvetmetizdat, 1932, pp. 16–30.Google Scholar
  13. 13.
    Andrede, M.C., Figueira, M.M., and Linardi, V.R., Short Communication: Utilization of Ammonia, Generated from Abiotic Cyanide Degradation, byRhodotorula rubra, Wld. J. Microbiol. Biotechnol, 1995, vol. 11, pp. 343–344.CrossRefGoogle Scholar
  14. 14.
    Hope, K.M. and Knowles, C.J., The Anaerobic Utilization of Cyanide in the Presence of Sugars by Microbial Cultures Can Involve an Abiotic Process,FEMS Microbiol. Lett., 1991, vol. 88, pp. 217–220.CrossRefGoogle Scholar
  15. 15.
    Harris, R. and Knowles, C.J., The Conversion of Cyanide to Ammonia by Extracts of a Strain ofPseudomonas fluorescens That Utilises Cyanide as a Source of Nitrogen,FEMS Microbiol. Lett., 1983, vol. 20, pp. 337–341.CrossRefGoogle Scholar
  16. 16.
    Kunz, D.A., Nagappan, O., Avalos, J.S., and Delong, G.T., Utilization of Cyanide as a Nitrogenous Substrate byPseudomonas fluorescens NCIMB 11764: Evidence for Multiple Pathway of Metabolic Conversion,Appl. Environ. Microbiol., 1992, vol. 58, pp. 2022–2029.PubMedGoogle Scholar
  17. 17.
    Watanabe, A., Yano, K., Ikebuturo, K., and Karube, I., Cyanide Hydrolysis in a Cyanide-degrading Bacterium,Pseudomonas stutzeri AK61, by Cyanidase,Microbiology (Reading, UK), 1998, vol. 144, pp. 1677–1682.CrossRefGoogle Scholar
  18. 18.
    Ingvorsen, K., Hojer-Pedersen, B., and Godtfredsen, S.E., Novel Cyanide-hydrolyzing Enzyme fromAlcaligenes xylosoxidans subsp.denitrificans, Appl. Environ. Microbiol., 1991, vol. 57, pp. 1783–1789.PubMedGoogle Scholar
  19. 19.
    Meyers, P.R., Rawlings, D.E., Woods, D.R., and Lindsey, G.G., Isolation and Characterization of a Cyanide Dehydratase fromBacillus pumilis Cl,J. Bacteriol., 1993, vol. 175, pp. 6105–6112.PubMedGoogle Scholar
  20. 20.
    Bergey’s Manual of Determinative Bacteriology, 8th ed., Buchanan, R.E. and Gibbons, N.E, Eds., 1974, p. 458.Google Scholar
  21. 21.
    Youatt, I.B., Studies on the Metabolism ofThiobacillus thiocyanoxidans, J. Gen. Microbiol., 1954, vol. 11, pp. 139–149.PubMedGoogle Scholar
  22. 22.
    Wood, A.P., Kelly, D.P., McDonald, I.R., Jordan, S.I.,Arch. Microbial. Morgan, T.D., Khan, S., Murrell, J.C., and Borodina, E., A Novel Pink-pigmented Facultative Methylotroph,Methylobacterium thiocyanatum sp. nov., Capable of Growth on Thiocyanate or Cyanate as Sole Nitrogen Sources, SCN-1998, vol. 169, no. 2, pp. 148–158.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2000

Authors and Affiliations

  • G. I. Karavaiko
    • 1
  • T. F. Kondrat’eva
    • 1
  • E. E. Savari
    • 2
  • N. V. Grigor’eva
    • 1
  • Z. A. Avakyan
    • 1
  1. 1.Institute of MicrobiologyRussian Academy of SciencesMoscowRussia
  2. 2.Central Research Institute for Geological Exploration of Nonferrous and Precious MetalsMoscowRussia

Personalised recommendations