Advertisement

Il Nuovo Cimento A (1965-1970)

, Volume 68, Issue 4, pp 612–622 | Cite as

Transformation coefficients in the hyperspherical approach to the three-body problem

  • J. Raynal
  • J. Revai
Article

Summary

The transformation from one set of Jacobi co-ordinates to another for hyperspherical functions is closely related to the Talmi-Moshinsky transformation for two particles in an oscillator well. The corresponding coefficients are calculated analytically.

Keywords

Transformation Coefficient Oscillator Wave Function Energy Conservation Relation Hyperspherical Function Hyperspherical Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Преобраэование коЭффициентов при гиперсферическом подходе к проблеме трех тел

Реэуме

Преобраэование от однои системы координат Якоби к другои для гиперсферических функции тесно свяэано с преобраэованием Талми-Мощин-ского для двух частиц в осцилляторнои яме. Аналитически вычисляутся соответствуушие коЭффициенты.

Riassunto

Si collega strettamente la trasformazione da un sistema di coordinate di Jacobi ad un altro per funzioni ipersferiche alla trasformazione di Talmi-Moshinsky per due particelle in una buca di oscillatore. Si calcolano analiticamente i coefficienti corrispondenti.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    W. Zickendraht:Ann. of Phys.,35, 18 (1965).ADSMathSciNetCrossRefGoogle Scholar
  2. (2).
    Yu. A. Simonov:Sov. Journ. Nucl. Phys.,3, 461 (1966).MathSciNetGoogle Scholar
  3. (5).
    B. N. Zakharyev, V. V. Pustovalov andV. D. Efros:Sov. Journ. Nucl. Phys.,8, 234 (1969).Google Scholar
  4. (6).
    I. Talmi:Helv. Phys. Acta,25, 185 (1952).Google Scholar
  5. (7).
    M. Moshinsky:Nucl. Phys.,13, 104 (1959).MathSciNetCrossRefGoogle Scholar
  6. (8).
    Yu. F. Smirnov:Nucl. Phys.,27, 177 (1961).CrossRefGoogle Scholar
  7. (9).
    K. Kumar:Journ. Math. Phys.,7, 671 (1966).ADSCrossRefGoogle Scholar
  8. (11).
    A. Arima andT. Terasawa:Progr. Theor. Phys.,23, 115 (1960).ADSMathSciNetCrossRefGoogle Scholar
  9. (12).
    M. Baranger andK. T. R. Davies:Nucl. Phys.,79, 403 (1966).MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1970

Authors and Affiliations

  • J. Raynal
    • 1
  • J. Revai
    • 1
  1. 1.Service de Physique ThéoriqueCentre d’Etudes Nucléaires de SaclayGif-sur-Yvette

Personalised recommendations