High Temperature

, Volume 38, Issue 2, pp 224–230 | Cite as

Reference data on the viscosity of rarefied steam at a temperature of 2000 to 2500 K

  • L. R. Fokin
  • A. N. Kalashnikov
Thermophysical Properties of Materials


An extensive array of experimental data on the coefficients of viscosity and self-diffusion of rarefied steam at temperatures ranging from 280 to 1773 K is fitted using relations of molecular kinetic theory and the generalized four-parameter Stockmayer potential. The parameters are found, namely, the collision diameterd = 2.495 Å, the depth of potential well ε = 689.7 K, the exponent of the repulsion branchm = 9, the dipole moment μ = 1.803 D, and their error matrix. The tables of reference data are calculated up to 2500 K. The estimates are suggested of their confidence errors, as well as the upper limit of the model validity with respect to temperature.


Steam mcPa Error Matrix Confidence Error Confidence Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maitland, G., Rigby, M., Smith, E., and Wakeham, W.,Intermolecular Forces: Their Origin and Determination, Oxford: Clarendon, 1987.Google Scholar
  2. 2.
    Gurvich, L.v, Veits, I.v, Medvedev, V.A.,et al., Termodinamicheskie svoistva individual’nykh veshchestv (The Thermodynamic Properties of Individual Substances), Moscow: Nauka, 1978, vol. 1.Google Scholar
  3. 3.
    Sengers, J.V. and Watson, J.T.R.,J. Phys. Chem. Ref. Data, 1986, vol. 15, p. 1291.ADSCrossRefGoogle Scholar
  4. 4.
    Aleksandrov, A.A., Matveev, A.B., and Tsarev, I.v,GSSSD 6–89. Voda. Koeffitsient dinamicheskoi vyazkosti pri temperaturakh 0–800°C i davlenii ot sootvetstvuyushchikh razrezhennomu gazu do 300 MPa (GSSSD 6–89. Water: Coefficient of Dynamic Viscosity at Temperatures from 0 to 800°C and Pressures from That of Rarefied Gas to 300 MPa), Moscow: Izd. Standartov, 1990.Google Scholar
  5. 5.
    Arsen’ev, L.v, Sokolov, N.P., and Cheban, I.S.,Teploenergetika, 1996, no. 4, p. 31.Google Scholar
  6. 6.
    Kumakura, T., Kan, S., Hiraoca, K.,et al., Int. J. Hydrogen Eng., 1996, vol. 21(8), p. 685.CrossRefGoogle Scholar
  7. 7.
    Alemasov, al., Termodinamicheskie svoistva produktov sgoraniya. T. 2. Topliva na osnove kisloroda (The Thermodynamic Properties of Combustion Products, vol. 2: Oxygen-Based Fuels), Moscow: VINITI, 1972.Google Scholar
  8. 8.
    Bonilla, C.F., Brooks, R.D., and Walker, PL., The Viscosity of Steam and Nitrogen at Atmospheric Pressure and High Temperatures,Proceedings of General Discussion on Heat Transfer, The Institute of Mechanical Engineering (L.), 1951, p. 167.Google Scholar
  9. 9.
    Bonilla, C.F., Wang, S.J., and Weiner, H.,Trans. ASME, 1956, vol. 78, p. 1285.Google Scholar
  10. 10.
    Aleshin, A.I. and Shifrin, A.S.,Tr. Gos. Nauch. Issled. Inst. Grazhdanskoi Aviatsii, 1972, issue 72, p. 105.Google Scholar
  11. 11.
    Hilsenrath, J., Beckett, C.W., Benedict, W.S.,et al., Tables of Thermodynamic and Transport Properties of Air, Argon, Carbon Dioxide, Carbon Monoxide, Hydrogen, Nitrogen, Oxygen and Steam, Oxford: Pergamon, 1960.Google Scholar
  12. 12.
    Svehla, R.A., Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures,NASA Rt. R-132, 1962.Google Scholar
  13. 13.
    Kessel’man, P.M. and Litvinov, A.S.,Inzh. Fiz. Zh., 1966, vol. 10(3), p. 385.Google Scholar
  14. 14.
    Sutton, J.R., Viscosity of Gases,Technical Data Book on Fuel, London: British National Committee of the World Energy Conference, 1977, p. 169.Google Scholar
  15. 15.
    Matsunaga, N. and Nagashima, A.,J. Phys. Chem., 1983, vol. 87, p. 5268.CrossRefGoogle Scholar
  16. 16.
    Aleksandrov, A.A. and Matveev, A.B., Analysis of Data and Equations for Dynamic Viscosity of Steam of Low and Moderate Density,Sb. Nauchn. Tr. Mosk. Energ. Inst., 1987, no. 131, p. 5.Google Scholar
  17. 17.
    Zubarev, V.N., Kozlov, A.D., Kuznetsov, V.M.,et al., Teplofizicheskie svoistva tekhnicheski vazhnykh gazov pri vysokikh temperaturakh i davleniyakh: Spravochnik (The Thermal Properties of Technically Important Gases at High Temperatures and Pressures: A Handbook), Moscow: Energoatomizdat, 1989.Google Scholar
  18. 18.
    Aleksandrov, A.A. and Matveev, A.B.,Teplofiz. Vys. Temp., 1998, vol. 36, no. 5, p. 719 (High Temp. (Engl. transi.), vol. 36, no. 5, p. 695).Google Scholar
  19. 19.
    Monchick, L. and Mason, E.A.,J. Chem. Phys., 1961, vol. 35, p. 1676.CrossRefADSGoogle Scholar
  20. 20.
    McCourt, F.R.W., Van Duijneveldt, F.B., and Van Dam, T.,Mol. Phys., 1988, vol. 65(3), p. 757.CrossRefGoogle Scholar
  21. 21.
    Aleshin, A.I., Investigation of the Viscosity of Air and Other Technically Important Gases at High Temperatures and Its Application to Some problems of Physical Aerodynamics,Cand. Sci. (Eng.) Dissertation, Moscow: Moscow Aviation Inst., 1973.Google Scholar
  22. 22.
    Fokin, L.R., Popov, V.N., and Kalashnikov, A.N.,Teplofiz. Vys. Temp., 1999, vol. 37, no. 1, p. 49 (High Temp. (Engl. transi.), vol. 37, no. 1, p. 45).Google Scholar
  23. 23.
    Aleksandrov, A.A., Ivanov, A.I., and Matveev, A.B.,Inzh. Fiz. Zh., 1976, vol. 31(1), p. 328.Google Scholar
  24. 24.
    Swinton, F.L., Self-Diffusion in Gaseous CO2 and H2O And the Inter-Diffusion Coefficient of CO2/H2O Mixtures, inDiffusion Processes: Proceedings of the Thomas Graham Memorial Symposium, University of Strathclyde, London: Gordon and Breach, 1971, vol. 1, p. 53.Google Scholar
  25. 25.
    Smith, C.J.,Proc. Phys. Soc. London A, 1924, vol. 106, p. 83.CrossRefADSGoogle Scholar
  26. 26.
    Braune, H. and Linke, R.,Z. Phys. Chem. Abt. A, 1930, vol. 148, p. 195.Google Scholar
  27. 27.
    Kestin, J. and Leidenfrost, W.,Physica, 1959, vol. 25, p. 1033.CrossRefADSGoogle Scholar
  28. 28.
    Latto, B.,Int. J. Heat Mass Transfer, 1965, vol. 8, p. 689.CrossRefGoogle Scholar
  29. 29.
    Zhdanov, A.G., Lyusternik, V.E., and Timrot, D.L.,Inzh. Fiz.Zh., 1968, vol. 15(6), p. 1120.Google Scholar
  30. 30.
    Yasumoto, I.,Bull. Chem. Soc. Jpn., 1970, vol. 43(12), p. 3917.CrossRefGoogle Scholar
  31. 31.
    Timrot, D.L., Serednitskaya, M.A., and Bespalov, M.S.,Teploenergetika, 1973, no. 8, p. 78.Google Scholar
  32. 32.
    Fokin, L.R., Problems Associated with Estimation of the reliability of Reference Data on the Physicochemical Properties of Substances, inNeformal’nye matematicheskie modeli khimicheskoi termodinamiki (Informal Mathematical Models of Chemical Thermodynamics), Novosibirsk: Nauka, 1991, p. 100.Google Scholar
  33. 33.
    Teplovoi raschet kotel’nykh agregatov (normativnyi metod) (Standard Methods of Thermal Design for Power Boilers), Kuznetsov, al, Eds., Moscow: Energiya, 1973, p. 171.Google Scholar
  34. 34.
    Golubev, I.F. and Gnezdilov, N.E.,Vyazkost’ gazovykh smeSci (The Viscosity ofm Gas Mixtures), Moscow: Izd. Standartov, 1971, p. 90.Google Scholar
  35. 35.
    Watts, R.O.,Chem. Phys., 1977, vol. 26, p. 367.CrossRefADSGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2000

Authors and Affiliations

  • L. R. Fokin
    • 1
  • A. N. Kalashnikov
    • 1
  1. 1.IVTAN (Institute of High Temperatures) Scientific Association, Russian Academy of SciencesMoscowRussia

Personalised recommendations