Molecular Neurobiology

, Volume 12, Issue 3, pp 225–249 | Cite as

Regulation of gap junction coupling in the developing neocortex

  • Birgit Rörig
  • Bernd Sutor


In the developing mammalian, neocortex gap junctions represent a transient, metabolic, and electrical communication system. These gap junctions may play a crucial role during the formation and refinement of neocortical synaptic circuitries. This article focuses on two major points. First, the influence of gap junctions on electrotonic cell properties will be considered. Both the time-course and the amplitude of synaptic potentials depend,inter alia, on the integration capabilities of the postsynaptic neurons. These capabilities are, to a considerable extent, determined by the electrotonic characteristics of the postsynaptic cell. As a consequence, the efficacy of chemical synaptic inputs may be crucially affected by the presence of gap junctions.

The second major topic is the regulation of gap junctional communication by neurotransmitters via second messenger pathways. The monoaminergic neuromodulators dopamine, nordrenaline, and serotonin reduce gap junction coupling via activation of two different intracellular signaling cascades—the cAMP/protein kinase A pathway and the IP3/Ca2+/protein kinase C pathway, 013 respectively. In addition, gap junctional communication seems to be modulated by the nitric oxide (NO)/cGMP system. Since NO production can be stimulated by glutamate-induced calcium influx, the NO/cGMP-dependent modulation of gap junctions might represent a functional link between developing glutamatergic synaptic transmission and the gap junctional network. Thus, it might be of particular importance in view of a role of gap junctions during the process of circuit formation.

Index Entries

Somatosensory cortex prefrontal cortex gap junction development pyramidal cell electrotonic cell properties serotonin dopamine noradrenaline protein kinase A cAMP nitric oxide cGMP IP3 protein kinase C 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bayer E. C. (1993) Gap junctions.Int. Rev. Cytol. 137C, 1–37.Google Scholar
  2. 2.
    Yamada E. and Ishikawa T. (1965) Fine structure of the horizontal cells in some vertebrate retinae.Cold Spring Harbour Symp. Quant. Biol. 30, 383–392.Google Scholar
  3. 3.
    Naka K. I. and Rushton W. A. H. (1967) The generation and spread of S-potentials in fish (Cyprinidae).J. Physiol. 192, 437–461.PubMedGoogle Scholar
  4. 4.
    Witkovsky P. and Dowling J. E. (1969) Synaptic relationship in the plexiform layers of the carp retina.Z. Zellforsch. Mikrosk. Anat. 100, 60–82.PubMedGoogle Scholar
  5. 5.
    Kaneko A. (1971) Electrical connections between horizontal cells in the dogfish retina.J. Physiol. 213, 95–105.PubMedGoogle Scholar
  6. 6.
    Perlman I. and Ammermüller J. (1994) Receptive-field size of L1 horizontal cells in the turtle retina: effects of dopamine and background light.J. Neurophysiol. 72, 2786–2795.PubMedGoogle Scholar
  7. 7.
    Furukawa T. and Furshpan E. J. (1963) Two inhibitory mechanisms in the Mauthner neurones of the goldfish.J. Neurophysiol. 26, 140–176.PubMedGoogle Scholar
  8. 8.
    Lin J.-W. and Faber D. S. (1988) Synaptic transmission mediated by single club endings on the goldfish Mauthner cell. I. Characteristics of electrotonic and chemical postsynaptic potentials.J. Neurosci. 8, 1302–1312.PubMedGoogle Scholar
  9. 9.
    Llinas R., Baker R., and Sotelo C. (1974) Electrotonic coupling between neurones in cat inferior olive.J. Neurophysiol. 37, 560–571.PubMedGoogle Scholar
  10. 10.
    Sotelo C., Llinas R., and Baker R. (1974) Structural study of inferior olivary nucleus of the cat: morphological correlates of electrotonic coupling.J. Neurophysiol. 37, 541–559.PubMedGoogle Scholar
  11. 11.
    Llinas R. and Yarom Y. (1986) Oscillatory properties of guinea pig inferior olivary neurones and their pharmacological modulation: an in vitro study.J. Physiol. (Lond.) 376, 163–182.Google Scholar
  12. 12.
    Baker R. and Llinas R. (1971) Electrotonic coupling between neurons in the rat mesencephalic nucleus.J. Physiol. Lond. 212, 45–63.PubMedGoogle Scholar
  13. 13.
    Korn H., Sotelo C., and Crepel F. (1973) Electrotonic coupling between neurones in the rat lateral vestibular nucleus.Exp. Brain Res. 164, 255–275.Google Scholar
  14. 14.
    Andrew R. D., MacVicar B. A., Dudek F. E., and Hatton G. I. (1981) Dye transfer through gap junctions between neuroendocrine cells of rat hypothalamus.Science 211, 1187–1189.PubMedGoogle Scholar
  15. 15.
    O’Donnell P. and Grace A. A. (1993) Dopaminergic modulation of dye coupling between neurons in the core and shell regions of the nucleus accumbens.J. Neurosci. 13, 3456–3471.PubMedGoogle Scholar
  16. 16.
    Macvicar B. A. and Dudek F. E. (1981) Electrotonic coupling between pyramidal cells: a direct demonstration in rat hippocampal slices.Science 213, 782–785.PubMedGoogle Scholar
  17. 17.
    Perez-Velaquez J. L., Valliante T. A., and Carlen P. L. (1994) Modulation of gap junctional mechanisms during calcium-free induced field burst activity: a possible role for electrotonic coupling in epileptogenesis.J. Neurosci. 14, 4308–4317.Google Scholar
  18. 18.
    Connors B. W., Benardo L. S., and Prince D. A. (1983) Coupling between neurons of the developing rat neocortex.J. Neurosci. 3, 773–782.PubMedGoogle Scholar
  19. 19.
    Peinado A., Yuste R., and Katz L. C. (1993) Extensive dye coupling between rat neocortical neurons during the period of circuit formation.Neuron 10, 103–114.PubMedGoogle Scholar
  20. 20.
    Spitzer N. C. (1982) Voltage- and stage-dependent uncoupling of Rohon-Beard neurones during embryonic development of Xenopus tadpoles.J. Physiol. (Lond.) 330, 145–162.Google Scholar
  21. 21.
    Walton K. D. and Navarrete R. (1991) Postnatal changes in motoneurone electrotonic coupling studied in the in vitro rat lumbar spinal cord.J. Physiol. (Lond.) 433, 283–305.Google Scholar
  22. 22.
    Fulton B. P., Miledi R., and Takahashi T. (1980) Electrical synapses between motorneurons in the spinal cord of the newborn rat.Proc. R. Soc. Lond. (Biol.) 208, 115–120.Google Scholar
  23. 23.
    Paternostro M. A., Reyher C. K., and Brunjes P. C. (1995) Intracellular injections of lucifer yellow into lightly fixed mitral cells reveal neuronal dye-coupling in the developing rat olfactory bulb.Dev. Brain Res. 84, 1–10.Google Scholar
  24. 24.
    Lo Turco J. J. and Kriegstein A. R. (1991) Clusters of coupled neuroblasts in embryonic neocortex.Science 252, 563–566.PubMedGoogle Scholar
  25. 25.
    Lo Turco J. J. and Kriegstein A. R. (1995) Neurotransmitter signaling before the birth of neurones, inThe Cortical Neuron (Gutnick M. D. and Mody I., eds.) Oxford University Press, New York, pp. 197–209.Google Scholar
  26. 26.
    Mienville J. M., Lange G. D., and Barker J. L. (1994) Reciprocal expression of cell-cell coupling and voltage-dependent Na current during embryogenesis of rat telencephalon.Dev. Brain Res. 77, 89–95.Google Scholar
  27. 27.
    Rörig B., Klausa G., and Sutor B. (1996) Intracellular acidification reduced gap junction coupling between immature rat neocortical pyramidal neurones.J. Physiol. 490, 31–49.PubMedGoogle Scholar
  28. 28.
    Dermietzel R. O., Traub T., Hwang K., Beyer E., Bennett M. V. L., Spray D. C., and Willecke K. (1989) Differential expression of three gap junction proteins in developing and mature brain tissue.Proc. Natl. Acad. Sci. USA 86, 10,148–10,152.Google Scholar
  29. 29.
    Rörig B., Klausa G., and Sutor B. (1995) Dyecoupling between pyramidal neurons in developing rat prefrontal and frontal cortex is reduced by protein kinase A activation and dopamine.J. Neurosci. 15, 7386–7400.PubMedGoogle Scholar
  30. 30.
    Fulton B. P. (1994) Gap junctions in the developing nervous system.Perspect. Dev. Neurobiol. 2, 327–334.Google Scholar
  31. 31.
    Nadarajah B. and Parnavelas J. G. (1995) Gap junctions in the developing rat cerebral cortex.Soc. Neurosci. Abstracts 21, 29.Google Scholar
  32. 32.
    Penttonen M., Bragin A., Sik A., and Buszaki G. (1995) Dye-coupling of neurones in the hippocampus implies a role for gap junctions in epilepsy.Soc. Neurosci. Abstracts 21, 1971.Google Scholar
  33. 33.
    Saez J. C., Berthoud V. M., Moreno A. P., and Spray D. C. (1993) Gap junctions. Multiplicity of controls in differentiated and undifferentiated cells and possible functional implications.Adv. Second Mess. Phosphoprotein Res. 27, 163–198.Google Scholar
  34. 34.
    Gutnick M. J. and Prince D. A. (1981) Dye coupling and possible electrotonic coupling in the guinea pig neocortical slice.Science 211, 67–70.PubMedGoogle Scholar
  35. 35.
    Schulte-Mattler M. and Luhmann H. J. (1995) Morphometrical analysis of dye-coupled cells in adult rat neocortex.Pflügers Arch. (Suppl.) 429, R27.Google Scholar
  36. 36.
    Yuste R., Peinado A., and Katz L. C. (1992) A system of neuronal domains in developing neocortex.Science 257, 665–668.PubMedGoogle Scholar
  37. 37.
    Yuste R., Nelson D. A., Rubin W. W., and Katz L. C. (1995) Neuronal domains in developing neocortex: mechanisms of coactivation.Neuron 14, 7–17.PubMedGoogle Scholar
  38. 38.
    Kandler K. and Katz L. C. (1995) Mechanisms for initiation and propagation of intercellular calcium waves in the developing visual cortex.Soc. Neurosci. Abstracts 21, 1285.Google Scholar
  39. 39.
    Perkins A. T. and Teyler T. J. (1988) A critical period for long-term potentiation in the developing rat visual cortex.Brain Res. 439, 222–229.PubMedGoogle Scholar
  40. 40.
    Katz L. C. (1995) Coordination of vertebrate cellular assemblies by gap junctions.Dev. Biol. 6, 117–125.Google Scholar
  41. 41.
    Kandler K. and Katz L. C. (1995) Neuronal coupling and uncoupling in the developing nervous system.Curr. Opin. Neurobiol. 5, 98–105.PubMedGoogle Scholar
  42. 42.
    Rörig B., Klausa G., and Sutor B. (1995) Beta-adrenoreceptor activation reduces dye-coupling between immature rat neocortical neurones.Neuro Report 6, 1811–1815.Google Scholar
  43. 43.
    Rörig B. and Sutor B. (1996) Nitric oxide stimulated increase in intracellular cGMP modulates gap junction coupling in rat neocortex.Neuro Report 7, 569–572.Google Scholar
  44. 44.
    Roerig B. and Sutor B. (1996) Serotonin regulates gap junction coupling in the developing rat somatosensory cortex.Eur. J. Neurosci. 8, in press.Google Scholar
  45. 45.
    Chesler M. and Kaila K. (1992) Modulation of pH by neuronal activity.TINS 15, 396–402.PubMedGoogle Scholar
  46. 46.
    Hablitz J. J. (1987) Spontaneous ictal-like discharges and sustained potential shifts in the developing rat neocortexJ. Neurophysiol. 58, 1052–1065.PubMedGoogle Scholar
  47. 47.
    Sutor B., Hablitz J. J., Rucker F., and ten Bruggencate G. (1994) Spread of epileptiform activity in the immature rat neocortex studied with voltage-sensitive dyes and laser scanning microscopy.J. Neurophysiol. 72, 1756–1768.PubMedGoogle Scholar
  48. 48.
    Connors B. W., Benardo L. S., and Prince D. A. (1984) Carbon dioxide sensitivity of dye coupling among glia and neurons of the neocortex.J. Neurosci. 4, 1324–1330.PubMedGoogle Scholar
  49. 49.
    Bigiani A. and Roper S. D. (1994) Reduction of electrical coupling between Necturus taste receptor cells a possible role in acid taste.Neurosci. Lett. 176, 212–216.PubMedGoogle Scholar
  50. 50.
    Miyachi E. I., Kato C., and Nakaki T. (1994) Arachidonic acid blocks gap junctions between retinal horizontal cells.NeuroReport 5, 485–488.PubMedGoogle Scholar
  51. 51.
    Rall W. (1969) Time constant and electrotonic length of membrane cylinders and neurons.Biophys. J. 9, 1483–1508.PubMedGoogle Scholar
  52. 52.
    Johnston D. and Brown T. H. (1983) Interpretation of voltage-clamp measurements in hippocampal neurons.J. Neurophysiol. 50, 464–486.PubMedGoogle Scholar
  53. 53.
    Spruston N., Jaffe D. B., Williams S. H., and Johnston D. (1993) Voltage- and space-clamp errors associated with the measurement of electrotonically remote synaptic events.J. Neurophysiol. 70, 781–802.PubMedGoogle Scholar
  54. 54.
    Harris A. L., Spray D. C., and Bennett M. V. L. (1981) Kinetic properties of a voltage-dependent junctional conductance.J. Gen. Physiol. 77, 95–117.PubMedGoogle Scholar
  55. 55.
    Barrio L. C., Suchyna T., Bargiello T. A., Xian Hu I., Rogers R., Bennett M. V. L., and Nicholson B. (1991) Gap junctions formed by connexin 26 and 32 alone and in combination are differently affected by applied voltage.Proc. Natl. Acad. Sci. USA 88, 8410–8414.PubMedGoogle Scholar
  56. 56.
    Bennett M. V. L., Rubin J. B., Bargiello T. A., and Verselis V. K. (1993) Structure-function studies of voltage sensitivity of connexins, the family of gap junction forming proteins.Jpn. J. Physiol. 43, 301–310.Google Scholar
  57. 57.
    Verselis V. K., Ginter C. S., and Bargiello T. A. (1994) Opponent voltage gating polarities of two closely related connexins.Nature (Lond.) 368, 348–351.Google Scholar
  58. 58.
    White T. W., Bruzzone R., Goodenough D. A., and Paul G. K. (1994) Voltage gating of connexins.Nature (Lond.) 371, 208–209.Google Scholar
  59. 59.
    Bukauskas F. F. and Weingart R. (1994) Voltage-dependent gating of single gap junction channels in an insect cell line.Biophys. J. 67, 613–625.PubMedGoogle Scholar
  60. 60.
    Bukauskas F. F., Elfgang C., Willecke K., and Weingart R. (1995) Heterotypic gap junction channels (connexin26-connexin32) violate the paradigm of unitary conductance.Pflügers Arch. 429, 870–872.PubMedGoogle Scholar
  61. 61.
    Meyer T. (1991) Cell signalling by second messenger waves.Cell 64, 675–678.PubMedGoogle Scholar
  62. 62.
    Paysan J., Bolz J., Mohler H., and Fritschy J.-M. (1994) GABAA receptor α1 subunit, an early marker for area specification in developing rat cerebral cortex.J. Comp. Neurol. 350, 133–149.PubMedGoogle Scholar
  63. 63.
    Piccolino M., Neyton J., and Gerschenfeld H. M. (1984) Decrease of gap junction permeability induced by dopamine and cyclic adenosine 3′,5′-mono-phosphate in horizontal cells of the turtle retina.J. Neurosci. 4, 2477–2488.PubMedGoogle Scholar
  64. 64.
    Lasater E. M. and Dowling J. E. (1985) Dopamine decreases conductance of the electrical junctions between cultured retinal horizontal cells.Proc. Natl. Acad. Sci. USA 82, 3025–3029.PubMedGoogle Scholar
  65. 65.
    De Vries S. H. and Schwartz E. A. (1992) Hemi-gap-junction channels in solitary horizontal cells of the catfish retina.J. Physiol. 445, 201–230.Google Scholar
  66. 66.
    Hampson E. C. G. M., Vaney D. I., and Weiler R. (1992) Dopaminergic modulation of gap junction permeability between amacrine cells in mammalian retina.J. Neurosci. 12, 4911–4922.PubMedGoogle Scholar
  67. 67.
    McMahon D. G. and Brown D. R. (1994) Modulation of gap-junction channel gating at zebrafish retinal electrical synapses.J. Neurophysiol. 72, 2257–2259.PubMedGoogle Scholar
  68. 68.
    Cepeda J., Walsh J. P., Hull C. D., Howard S. G., Buchwald N. A., and Levine M. S. (1989) Dye coupling in the striatum of the rat. I. Modulation by dopamine-depleting lesions.Synapse 4, 229–237.PubMedGoogle Scholar
  69. 69.
    Onn S.-P. and Grace A. A. (1994) Dye coupling between rat striatal neurons recorded in vivo: compartmental organization and modulation by dopamine.J. Neurophysiol. 71, 1917–1934.PubMedGoogle Scholar
  70. 70.
    Pereda A., Triller A., Wolzon L., and Faber D. S. (1994) Postsynaptic modulation of synaptic efficacy at mixed synapses on the Mauthner cell.J. Neurosci. 14, 3704–3712.PubMedGoogle Scholar
  71. 71.
    Saez J. C., Berthood V. M., Kadle R., Traub O., Nicholson B. J., Bennett M. V. L., and Dermietzel R. (1991) Pinealocytes in rats: connexin identification and increase in coupling caused by norepinephrine.Brain Res. 568, 265–275.PubMedGoogle Scholar
  72. 72.
    Giaume C., Marin P., Cordier J., Glowinski J., and Premont J. (1991) Adrenergic regulation of intercellular communication between striatal astrocytes from the mouse.Proc. Natl. Acad. Sci. USA 88, 5577–5581.PubMedGoogle Scholar
  73. 73.
    Haydon P. G., McCobb D. P., and Kater S. B. (1984) Serotonin selectively inhibits growth cone motility and synaptogenesis of specific identified neurons.Science 226, 561–564.PubMedGoogle Scholar
  74. 74.
    Piccolino M., Neyton J., Witkovsky P., and Gerschenfeld H. M. (1982) Gamma-aminobutyric acid antagonists decrease junctional communication between L-horizontal cells of the retina.Proc. Natl. Acad. Sci. USA 79, 3671–3675.PubMedGoogle Scholar
  75. 75.
    Iwatsuki N. and Peterson O. H. (1978) Pancreatic acinar cells: acetylcholine-evoked electrical uncoupling and its ionic dependency.J. Physiol. 274, 81–86.PubMedGoogle Scholar
  76. 76.
    Hatton G. I. and Yang Q. Z. (1990) Activation of excitatory amino acid inputs to supraoptic neurones. I. Induced increases in dye-coupling in lactating, but not virgin or male rats.Brain Res. 513, 264–269.PubMedGoogle Scholar
  77. 77.
    Hatton G. I. and Yang Q. Z. (1996) Synaptically released histamine increases dye coupling among vasopressinergic neurones of the supraoptic nucleus: mediation by H1 receptors and cyclic nucleotides.J. Neurosci. 16, 123–129.PubMedGoogle Scholar
  78. 78.
    Hatton G. I., Yang Q. Z., and Koran L. E. (1992) Effects of ovariectomy and estrogen replacement on dye coupling among rat supraoptic nucleus neurones.Brain Res. 572, 291–295.PubMedGoogle Scholar
  79. 79.
    Schmidt R. H., Björklund A., Lindvall O., and Loren I. (1982) Prefrontal cortex: dense dopaminergic input in the newborn rat.Dev. Brain Res 5, 222–228.Google Scholar
  80. 80.
    Verney C., Berger G., Adrian J., Vigny A., and Gay M. (1982) Development of the dopaminergic innervation of the rat cerebral cortex: a light microscopic immunocytochemical study using anti-tyrosine hydroxylase antibodies.Dev. Brain Res. 5, 41–52.Google Scholar
  81. 81.
    Berger B., Verney C., Alvarez C., Vigny A., and Helle K. B. (1985) New dopaminergic terminal fields in the motor, visual (area 18b) and retrosplenial cortex in the young and adult rat. Immunocytochemical and catecholamine histochemical analysis.Neuroscience 15, 983–998.PubMedGoogle Scholar
  82. 82.
    Berger B., Gaspar P., and Verney C. (1991) Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates.TINS 14, 21–27.PubMedGoogle Scholar
  83. 83a.
    Kalsbeek A., Voorn P., Buijs R. M., Pool L. W., and Uylings H. B. M. (1988) Development of the dopaminergic innervation in the prefrontal cortex of the rat.J. Comp. Neurol. 269, 58–62.PubMedGoogle Scholar
  84. 83b.
    Schambra U. B., Duncan G. E., Breese G. R., Fornaretto M. G., Caron M. G., and Fremeau R. T. (1994) Ontogeny of D1A and D2 receptor subtypes in rat brain using in situ hybridization and receptor binding.Neuroscience 62, 65–85.PubMedGoogle Scholar
  85. 84a.
    Kalsbeek A., Buijs R. M., Hofman M. A., Matthijsen M. A. H., Pool C. W., and Uylings H. B. M. (1987) Effects of neonatal thermal lesioning of the mesocortical dopaminergic projection on the development of the rat prefrontal cortex.Dev. Brain. Res. 32, 123–132.Google Scholar
  86. 84b.
    Leslie C. A., Robertson M. W., Cutler A. J., and Bennett J. P. (1991) Postnatal development of D1 dopamine receptors in the medial prefrontal cortex, striatum and nucleus accumbens of normal and neonatal 6-hydroxydopamine treated rats: a quantitative autoradiographic analysis.Dev. Brain Res. 62, 109–114.Google Scholar
  87. 85a.
    Kalsbeek A., Matthissen M. A. H., and Uylings H. B. M. (1989) Morphometric analysis of prefrontal cortical development following neonatal lesioning of the dopaminergic mesocortical projections.Exp. Brain Res. 78, 279–289.PubMedGoogle Scholar
  88. 85b.
    Saez J. C., Spray D. C., Nairn A. C., Hertzberg E. L., Greengard P., and Bennett M. V. L. (1986) CAMP increases junctional conductance and stimulates phosphorylation of the 27 kDa principal gap junction polypeptide.Proc. Natl. Acad. Sci. USA 83, 2473–2477.PubMedGoogle Scholar
  89. 86.
    DeMello W. C. (1983) The influence of pH on the healing-over of mammalian cardiac muscle.J. Physiol. 339, 299–307.Google Scholar
  90. 87.
    DeMello W. C. (1989) Effect of isoproterenol and 3-isobutyl-1-methylxanthine on junctional conductance in heart cell pairs.Biochim. Biophys. Acta 1012, 291–298.Google Scholar
  91. 88.
    Burt J. M. and Spray D. C. (1988) Single channel events and gating behaviour of the cardiac gap junction channel.Proc. Natl. Acad. Sci. USA 85, 3431–3434.PubMedGoogle Scholar
  92. 89.
    Burt J. M. and Spray D. C. (1988) Inotropic agents modulate gap junctional conductance between cardiac myocytes.Am. J. Physiol. 254, 1206–1210.Google Scholar
  93. 90.
    Teranishi T., Negishi K., and Kato S. (1983) Dopamine modulates S-potential amplitude and dye-coupling between external horizontal cells in carp retina.Nature 301, 243–246.PubMedGoogle Scholar
  94. 91.
    Lasater E. M. (1987) Retinal horizontal cell gap junctional conductance is modulated by dopamine through a cyclic-AMP-dependent protein kinase.Proc. Natl. Acad. Sci. USA 84, 7319–7323.PubMedGoogle Scholar
  95. 92.
    McMahon D. G. (1994) Modulation of electrical synaptic transmission in zebrafish retinal horizontal cells.J. Neurosci. 14, 1722–1734.PubMedGoogle Scholar
  96. 93.
    LaHoste G. J., Yu J., and Marshall J. F. (1993) Striatal fos expression is indicative of dopamine D1/D2 synergism and receptor supersensitivity.Proc. Natl. Acad. Sci. USA 90, 7451–7455.PubMedGoogle Scholar
  97. 94.
    Robertson G. S. and Robertson H. A. (1987) D1 and D2 dopamine agonist synergism: separate sites of action?TIPS 8, 295–299.Google Scholar
  98. 95.
    Saller C. F. and Salama A. I. (1986) D1- and D-2 Dopamine receptor blockade: interactive effects in vitro and in vivo.J. Pharmacol. Exp. Ther. 236, 714–720.PubMedGoogle Scholar
  99. 96.
    Maeda T., Tohyama M., and Shimizu N. (1974) Modification of postnatal development of neocortex in rat brain with experimental deprivation of locus coeruleus.Brain Res. 70, 515–520.PubMedGoogle Scholar
  100. 97.
    Wendlandt S., Crow T. J., and Stirling R. V. (1977) The involvement of the noradrenergic system arising from the locus coeruleus in the postnatal development of the cortex of the rat brain.Brain Res. 125, 1–9.PubMedGoogle Scholar
  101. 98.
    Felten D. L., Hallman H., and Jonsson G. (1982) Evidence for a neurotrophic role of noradrenaline neurons in the postnatal development of rat cerebral cortex.J. Neurocytol. 11, 119–135.PubMedGoogle Scholar
  102. 99.
    Parnavelas J. G. and Blue M. E. (1982) The role of the noradrenergic system on the formation of synapses in the visual cortex of the rat.Dev. Brain Res. 3, 140–144.Google Scholar
  103. 100.
    Osterheld-Haas M. C., Van der Loos H., and Hornung J.-P. (1994) Monoaminergic afferents to cortex modulate structural plasticity in the barrelfield of the mouse.Dev. Brain Res. 77, 189–202.Google Scholar
  104. 101.
    Gordon B., Allen E. E., and Trombley P. Q. (1988) The role of norepinephrine in plasticity of visual cortex.Prog. Neurobiol. 30, 171–191.PubMedGoogle Scholar
  105. 102.
    Bröcher S., Artola A., and Singer W. (1992) Agonists of cholinergic and noradrenergic receptors facilitate synergistically the induction of long-term potentiation in slices of rat visual cortex.Brain Res. 573, 27–36.PubMedGoogle Scholar
  106. 103.
    Levitt P. and Moore R. Y. (1979) Development of the noradrenergic innervation of neocortex.Brain Res. 162, 243–259.PubMedGoogle Scholar
  107. 104.
    McDonald J. K., Petrovic S. L., McCann S. M., and Parnavelas J. G. (1982) The development of beta-adrenergic receptors in the visual cortex of the rat.Neuroscience 7, 2649–2655.PubMedGoogle Scholar
  108. 105.
    Rhoades R. W., Bennett-Clarke C. A., Chiaia N. L., White F. A., McDonald G. J., Haring J. H., and Jaquin M. F. (1990) Development and lesion-induced reorganization of the cortical representation of the rat’s body surface as revealed by immunocytochemistry for serotonin.J. Comp. Neurol. 293, 190–207.Google Scholar
  109. 106.
    D’Amato R. J., Blue M. E., Largent B. L., Lynch D. R., Ledbetter D. J., Molliver M. E., and Snyder S. H. (1987) Ontogeny of the serotonergic projection to rat neocortex: transient expression of a dense innervation to primary sensory areas.Proc. Natl. Acad. Sci. USA 84, 4322–4326.PubMedGoogle Scholar
  110. 107.
    Nakazawa M., Koh T., Kani K., and Maeda T. (1992) Transient patterns of serotonergic innervation in the rat visual cortex: normal development and effects of neonatal enucleation.Dev. Brain Res. 66, 77–90.Google Scholar
  111. 108.
    Hohmann C. F., Hamon R., Batshaw M. L., and Coyle J. T. (1988) Transient postnatal elevation of serotonin levels in mouse neocortex.Dev. Brain Res. 43, 163–166.Google Scholar
  112. 109.
    Killackey H. P. and Leshin S. (1975) The organization of specific thalamocortical projections to the posteromedial barrel subfield of the rat somatic sensory cortex.Brain Res. 86, 469–472.PubMedGoogle Scholar
  113. 110.
    Lidov H. G. W. and Molliver M. E. (1982) An immunohistochemical study of serotonin neuron development in the rat: ascending pathways and terminal fields.Brain Res. Bull. 8, 389–430.PubMedGoogle Scholar
  114. 111.
    Fujimiya M., Kimura H., and Maeda T. (1986) Postnatal development of serotonin nerve fibers in the somatosensory cortex of mice studied by immunocytochemistry.J. Comp. Neurol. 246, 191–201.PubMedGoogle Scholar
  115. 112.
    Bennett-Clarke C. A., Hankin M. H., Leslie M. J., Chiaia N. L., and Rhoades R. W. (1994) Patterning of the neocortical projections from the raphe nuclei in perinatal rats: investigation of potential organizational mechanisms.J. Comp. Neurol. 348, 277–290.PubMedGoogle Scholar
  116. 113.
    Bennett-Clarke C. A., Leslie M. J., Lane R. D., and Rhoades R. W. (1994) Effect of serotonin depletion on vibrissa-related patterns of thalamic afferents in the rat’s somatosensory cortex.J. Neurosci. 14, 7595–7607.Google Scholar
  117. 114.
    Gu Q. and Singer W. (1995) Involvement of serotonin in developmental plasticity of kitten visual cortex.Eur. J. Neurosci. 7, 1146–1153.PubMedGoogle Scholar
  118. 115.
    Rhoades R. W., Bennett-Clarke C. A., Shi M.-Y., and Mooney R. D. (1994) Effects of 5-HT on thalamocortical synaptic transmission in the developing rat.J. Neurophysiol. 72, 2438–2450.PubMedGoogle Scholar
  119. 116.
    Bennett-Clarke C. A., Leslie M. J., Chaia N. L., and Rhoades R. W. (1993) Serotonin 1 B receptors in the developing somatosensory and visual cortices are located on thalamocortical axons.Proc. Natl. Acad. Sci. USA 90, 153–157.PubMedGoogle Scholar
  120. 117.
    Miller M. W. (1988) Development of projection and local circuit neurons in neocortex, inCerebral Cortex, vol. 7, Development and Maturation of Cerebral Cortex. (Peters A. and Jones E. D., eds.) Plenum, New York, pp. 133–175.Google Scholar
  121. 118.
    Rörig B., Klausa G., and Sutor B. (1995) Modulatory neurotransmitters reduce dyecoupling between developing lamina II/III pyramidal neurones in rat neocortex.Soc. Neurosci. Abstracts 21, 1509.Google Scholar
  122. 119.
    Pazos A., Cortes R., and Palacios M. (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors.Brain Res. 346, 231–249.PubMedGoogle Scholar
  123. 120.
    Pompeiano M., Palacios J. M., and Mengod G. (1994) Distribution of the serotonin 5-HT2 receptor family mRNAs: comparison between 5-HT2A and 5-HT2C receptors.Mol. Brain Res. 23, 163–178.PubMedGoogle Scholar
  124. 121.
    Wright D. E., Seroogy K. B., Lundgren K. H., Davis B. M., and Jennes L. (1995) Comparative localization of serotonin 1A, 1 C and 2 receptor subtype mRNAs in rat brain.J. Comp. Neurol. 351, 357–373.PubMedGoogle Scholar
  125. 122.
    Pazos A. and Palacios J. M. (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors.Brain Res. 346, 205–230.PubMedGoogle Scholar
  126. 123.
    Pazos A., Cortes R., and Palacios M. (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors.Brain Res. 346, 231–249.PubMedGoogle Scholar
  127. 124.
    De Chaffoy de Courcelles D., Leysen J. E., de Clerk F., van Belle H., and Janssen P. A. J. (1985) Evidence that phospholipid turnover is the signal transducing system coupled to serotonin-S2 receptor sites.J. Biol. Chem. 260, 7603–7608.PubMedGoogle Scholar
  128. 125.
    Conn P. J., Sanders-Busch E., Hoffmann B. J., and Hartig P. R. (1986) A unique serotonin receptor in choroid plexus is linked to phosphatidylinositol turnover.Proc. Natl. Acad. Sci. USA 83, 4986–4088.Google Scholar
  129. 126.
    Noma A. and Tsuboi N. (1986) Direct measurement of the gap junctional conductance under the influence of Ca2+ in dissociated paired myocytes of guinea pig.Jpn. Heart J. 27, 161–166.PubMedGoogle Scholar
  130. 127.
    Lazrak A. and Peracchia C. (1993) Gap junction gating sensitivity to physiological internal calcium regardless of pH in Novikoff hepatoma cells.Biophys. J. 65, 2002–2012.PubMedGoogle Scholar
  131. 128.
    Smith P. M. and Gallacher D. V. (1994) Thapsigargin-induced Ca2+ mobilization in acutely isolated mouse lacrimal acinar cells is dependent on a basal level of Ins(1,4,5)P3 and is inhibited by heparin.Biochem. J. 299, 37–40.PubMedGoogle Scholar
  132. 129.
    Takahashi M., Tanzawa K., and Takahashi S. (1994) Adenophostins, newly discovered metabolites ofPenicillium brevicompactum, act as potent agonists of the inositol 1,4,5-trisphosphate receptor.J. Biol. Chem. 269, 369–372.PubMedGoogle Scholar
  133. 130.
    Sullivan J. P., Connor J. R., Shearer B. G., and Burch R. M. (1991) ‘2,6-Diamino-N-([1-(oxotridecyl)-2-piperidinyl]methyl)hexanamide (NPC 15437): a selective inhibitor of protein kinase C’.Agents Actions 34, 138.Google Scholar
  134. 131.
    Wang H. Y. and Friedman E. (1990) Central 5-hydroxytryptamine receptor linked protein kinase C translocation: a functional postsynaptic signal transduction system.Mol. Pharmacol. 37, 75–79.PubMedGoogle Scholar
  135. 132.
    Ngezahayo A., Lang F., and Kolb H. A. (1995) Cholecystokinin-octapeptide affects the fluorescence signal of a single pancreatic acinar cell loaded with the acrylodan-labelled MARCKS peptide, a protein kinase C substrate.Pflügers Arch. 429, 805–808.PubMedGoogle Scholar
  136. 133.
    Inoguchi T., Ueda F., Umeda F., Yamashita T., and Nawata H. (1995) Inhibition of intercellular communication via gap junctions in cultured aortic endothelial cells by elevated glucose and phorbol ester.Biochem. Biophys. Res. Commun. 208, 492–497.PubMedGoogle Scholar
  137. 134.
    Konietzko U. and Müller C. M. (1994) Astrocytic dye-coupling in rat hippocampus: topography, developmental onset, and modulation by protein kinase C.Hippocampus 4, 297–306.PubMedGoogle Scholar
  138. 135.
    Munari-Silem Y., Audebet C., and Rousset B. (1991) Hormonal control of cell to cell communication: regulation by thyrotropin of the gap junction-mediated dye transfer between thyroid cells.Endocrinology 128, 3299–3309.PubMedGoogle Scholar
  139. 136.
    Nnamani C., Godwin A., Ducsay C. A., Longo L. D., and Fletcher W. H. (1994) Regulation of cell-cell communication mediated by connexin 43 in rabbit myometrial cells.Biol. Reprod. 50, 377–389.PubMedGoogle Scholar
  140. 137.
    Berthoud V. M., Ledbetter M. L., Hertzberg E. L., and Saez J. C. (1992) Connexin43 in MDCK cells: regulation by a tumor-promoting phorbol ester and Ca2+.Eur. J. Biol. 57, 40–50.Google Scholar
  141. 138.
    Reynhout J. K., Lampe P. D., and Johnson R. G. (1992) An activator of protein kinase C inhibits gap junction communication between cultured bovine lens cells.Exp. Cell Res. 198, 337–342.PubMedGoogle Scholar
  142. 139.
    Enkvist M. O. and McCarthy K. D. (1992) Activation of protein kinase C blocks astroglial gap junction communication and inhibits the spread of calcium waves.J. Neurochem. 59, 519–526.PubMedGoogle Scholar
  143. 140.
    Berthoud V. M., Rook M. B., Traub O., Hertzberg E. L., and Saez J. C. (1993) On the mechanisms of cell uncoupling induced by a tumor phorbol ester in clone 9 cells, a rat liver epithelial cell line.Eur. J. Cell Biol. 62, 384–396.PubMedGoogle Scholar
  144. 141.
    Randriamampita C., Giaume C., Neyton J., and Trautmann A. (1988) Acetylcholine-induced closure of gap junction channels in rat lacrimal glands is probably mediated by protein kinase C.Pflügers Arch. 412, 462–468.PubMedGoogle Scholar
  145. 142.
    Saez J. M., Nairn A. C., Czernik A. J., Spray D. C., Hertzberg E. L., Greengard P., and Bennett M. V. (1990) Phosphorylation of connexin 32, a hepatocyte gap junction protein, by cAMP dependent protein kinase, protein kinase C and Ca2+/calmodulin dependent protein kinase II.Eur. J. Biochem. 192, 263–273.PubMedGoogle Scholar
  146. 143.
    Spray D. C. and Burt J. M. (1990) Structure-activity relations of the cardiac gap junction channel.Am. J. Physiol. 258, 195–205.Google Scholar
  147. 144.
    Rose B. and Loewenstein W. R. (1975) Permeability of cell junction depends on local cytoplasmic calcium activity.Nature 254, 250–252.PubMedGoogle Scholar
  148. 145.
    Noma A. and Tsuboi N. (1987) Dependence of junctional conductance on proton, calcium and magnesium ions in cardiac paired cells of guinea pig.J. Physiol. Lond. 382, 193–211.PubMedGoogle Scholar
  149. 146.
    Crow J. M., Atkinson M. M., and Johnson R. G. (1994) Micromolar levels of intracellular calcium reduce gap junctional permeability in lens cultures.Invest. Opthalmol. Vis., Sci. 35, 3332–3341.Google Scholar
  150. 147.
    Rao G., Barnes C. A., and McNaughton B. L. (1987) Occlusion of hippocampal electrical junctions by intracellular calcium injection.Brain Res. 408, 267–270.PubMedGoogle Scholar
  151. 148.
    Kasai H. and Petersen O. H. (1994) Spatial dynamics of second messengers: IP3 and cAMP as long-range and associative messengers.TINS 17, 95–101.PubMedGoogle Scholar
  152. 149.
    Kandler K., Douglas S. B., and Katz L. C. (1994) Neuronal dye-coupling and spontaneous activity are inversely related in developing ferret visual cortex.Soc. Neurosci. Abstracts 20, 215.Google Scholar
  153. 150.
    Burgard E. C. and Hablitz J. J. (1993) Developmental changes in NMDA and non-NMDA receptor-mediated synaptic potentials in rat neocortex.J. Neurophysiol. 69, 230–240.PubMedGoogle Scholar
  154. 151.
    Vincent S. R. (1993) Nitric oxide: a radical neurotransmitter in the central nervous system.Prog. Neurobiol. 42, 129–160.Google Scholar
  155. 152.
    Crair M. C. and Malenka R. C. (1995) A critical period for long-term potentiation at thalamocortical synapses.Nature 375, 325–328.PubMedGoogle Scholar
  156. 153.
    Carmignoto G. and Vicini S. (1992) Activity dependent decrease in NMDA receptor responses during development of the visual cortex.Science 258, 1007–1011.PubMedGoogle Scholar
  157. 154.
    Jonas P., Racca C., and Sakmann B. (1994) Differences in Ca2+ permeability of AMPA-type glutamate receptor channels in neocortical neurones caused by differential GluR-B subunit expression.Neuron 12, 1281–1289.PubMedGoogle Scholar
  158. 155.
    Miyachi E.-I., Murakami M., and Nakaki T. (1990) Arginine blocks gap junctions between retinal horizontal cells.NeuroReport 1, 107–110.PubMedGoogle Scholar
  159. 156.
    Kwak B. R., Saez J. C., Wilders R., Chanson M., Fishman G. I., Hertzberg E. L., Spray D. C., and Jongsma H. J. (1995) Effects of cGMP-dependent phosphorylation on rat and human connexin 43 gap junction channels.Pflügers Arch. 430, 770–778.PubMedGoogle Scholar
  160. 157.
    Alagarsamy S., Lonart C., and Johnson K. M. (1994) Regulation of nitric oxide synthase activity in cortical slices by excitatory amino acids and calcium.J. Neurosci. Res. 38, 648–653.PubMedGoogle Scholar
  161. 158.
    Price R. H., Mayer B., and Beitz A. J. (1993) Nitric oxide synthase neurones in rat brain express more NMDA receptor mRNA than non-NOS neurons.NeuroReport 4, 807–810.PubMedGoogle Scholar
  162. 159.
    Yan X. X., Garey L. J., and Jen L. S. (1994) Development of NADH-diaphorase activity in the rat neocortex.Dev. Brain Res. 79, 29–38.Google Scholar
  163. 160.
    Valtschanoff J. G., Weinberg R. J., Kharazia V. N., Schmidt H. H., Nakane M., and Rushioni, A. (1993) Neurons in rat cerebral cortex that synthesize nitric oxide: NADPH diaphorase histochemistry, NOS immunohistochemistry and colocalization with GABA.Neurosci. Lett. 157, 157–161.PubMedGoogle Scholar
  164. 161.
    Kitchener P. D., Van-der-Zee C. E., and Diamond J. (1993) Lesion-induced NADPH-diaphorase reactivity in neocortical pyramidal neurones.NeuroReport 4, 487–490.PubMedGoogle Scholar
  165. 162.
    Dehay C., Giroud P., Berland M., Smart I., and Kennedy H. (1993) Modulation of the cell cycle contributes to the parcellation of the primate visual cortex.Nature 366, 464–466.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 1996

Authors and Affiliations

  • Birgit Rörig
    • 1
  • Bernd Sutor
    • 1
  1. 1.Institute of PhysiologyUniversity of MunichMunichGermany

Personalised recommendations