Advertisement

Differential Equations

, Volume 36, Issue 3, pp 417–422 | Cite as

The basis property of a system of root functions of a nonlocal problem for a third-order equation with a parabolic-hyperbolic operator

  • A. S. Berdyshev
Partial Differential Equations
  • 38 Downloads

Keywords

Strong Solution Riesz Basis Root Function Nonlocal Problem Complete Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bitsadze, A.V. and Salakhiddinov, M.S.,Sib. Mat. Zh., 1961, vol. 2, no. 1, pp. 7–19.MATHGoogle Scholar
  2. 2.
    Salakhiddinov, M.S.,Uravneniya smeshanno-sostavnogo tipa (Equations of Mixed-Composite Type), Tashkent, 1974.Google Scholar
  3. 3.
    Dzhuraev, T.D.,Kraevye zadachi dlya uravnenii smeshannogo i smeshanno-sostavnogo tipov (Boundary Value Problems for Equations of Mixed and Mixed-Composite Types), Tashkent, 1979.Google Scholar
  4. 4.
    Dzhuraev, T.D., Sopuev, A., and Mamazhanov, M.,Kraevye zadachi dlya uravnenii parabolo-giperbolicheskogo tipa (Boundary Value Problems for Equations of Parabolic-Hyperbolic Type), Tashkent, 1986.Google Scholar
  5. 5.
    Vragov, V.N.,Differents. Uravn., 1973, vol. 9, no. 4, pp. 169–171.MATHMathSciNetGoogle Scholar
  6. 6.
    Il’in, V.A.,Spektral’naya teoriya differentsial’nykh operatorov (Spectral Theory of Differential Operators), Moscow, 1991.Google Scholar
  7. 7.
    Moiseev, E.I.,Uravneniya smeshannogo tipa so spektral’nym parametrom (Equations of Mixed Type with a Spectral Parameter), Moscow, 1988.Google Scholar
  8. 8.
    Il’in, V.A. and Moiseev, E.I.,Differents. Uravn., 1994, vol. 30, no. 1, pp. 128–143.MathSciNetGoogle Scholar
  9. 9.
    Dzhuraev, T.D., Loginov, B.V., and Malyugina, I.A., inDifferentsial’nye uravneniya matematicheskoi fiziki i ikh prilozheniya (Differential Equations of Mathematical Physics and Their Applications), Tashkent, 1989, pp. 24–36.Google Scholar
  10. 10.
    Kesel’man, G.M.,Izv. Vyssh. Uchebn. Zaved. Matematika, 1964, no. 2, pp. 82–83.Google Scholar
  11. 11.
    Baranovska, M. and Il’in, V.A.,Math. Slovaca, 1985, vol. 35, no. 2, pp. 161–167.MathSciNetGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2000

Authors and Affiliations

  • A. S. Berdyshev
    • 1
  1. 1.Institute for MathematicsAcademy of SciencesUzbekistan

Personalised recommendations