Differential Equations

, Volume 36, Issue 6, pp 934–937 | Cite as

The best many-dimensional parametrization

  • E. B. Kuznetsov
  • V. I. Shalashilin
Short Communications


Tangent Space Lagrange Function Independent Vector Orthonormal System Continuation Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shalashilin, V.l. and Kuznetsov, E.B.,Dokl. RAN, 1994, vol. 334, no. 5, pp. 566–568.MathSciNetGoogle Scholar
  2. 2.
    Kuznetsov, E.B. and Shalashilin, V.l.,Differents. Uravn., 1994, vol. 30, no. 6, pp. 964–971.MathSciNetGoogle Scholar
  3. 3.
    Bakhvalov, N.S.,Chislennye metody (Numerical Methods), vol. 1, Moscow, 1973.Google Scholar
  4. 4.
    Ortega, J. and Poole, W.,An Introduction to Numerical Methods for Differential Equations, Boston-London: Pitman, 1986. Translated under the titleVvedenie v chislennye metody resheniya differentsial’nykh uravnenii, Moscow, 1986.MATHGoogle Scholar
  5. 5.
    Kurosh, A.G.,Kurs vysshei algebry (Course of Higher Algebra), Moscow, 1963.Google Scholar
  6. 6.
    Trenogin, V.A.,Funkts. Analiz i Ego Prilozheniya, 1998, vol. 32, no. 1, pp. 87–90.MathSciNetGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2000

Authors and Affiliations

  • E. B. Kuznetsov
    • 1
  • V. I. Shalashilin
    • 1
  1. 1.Moscow Aviation InstituteTechnical UniversityMoscowRussia

Personalised recommendations