Advertisement

Differential Equations

, Volume 36, Issue 9, pp 1284–1295 | Cite as

The method of boundary integral equations for two-dimensional singularly perturbed nonstationary heat problems with nonlinear boundary conditions

  • G. A. Nesenenko
Partial Differential Equations
  • 50 Downloads

Keywords

Asymptotic Expansion Boundary Integral Equation Exponential Type Nonlinear Integral Equation Asymptotic Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nesenenko, G.A.,Bibliograficheskii spravochnik po teme: geometro-opticheskii asimptoticheskii metod resheniya nelineinykh singulyarno vozmushchennykh zadach teploi massoperenosa v mnogosloinykh sredakh s defektami tipa treshchin (Bibliographic Reference Book on the Geometric-Optic Asymptotic Method for Nonlinear Singularly Perturbed Problems of Heat and Mass Transport in Multilayer Media with Crack-Like Defects), Moscow, 1994.Google Scholar
  2. 2.
    Nesenenko, G.A.,Sbornik dokladov I konferentsii po mekhanike: Rezul’taty nauchnykh issledovanii i dostizheniya mnogostoronnego nauchnogo sotrudnichestva Akademii nauk sotsialisticheskikh stran. Praga, 29.06–03.07.1987 (Collection of Reports on I Conf. on Mechanics: Results of Scientific Investigations and Achievements of the Many-Sided Scientific Collaboration between Academies of Sciences of Socialistic Countries. Praga, June 29–July 3, 1987), Praga; Bratislava, 1987, vol. 3, pp. 314–316.Google Scholar
  3. 3.
    Nesenenko, G.A.,ZAMM, 1989, vol. 69, no. 1, pp. 51–52.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Nesenenko, G.A. and Latypov, I.I., inDifferentsial’nye uravneniya s chastnymi proizvodnymi. Obshchaya teoriya i prilozheniya: Sbornik nauchnykh trudov (Partial Differential Equations. General Theory and Applications: Collection of Scientific Works), St. Petersburg, 1992, pp. 106–122.Google Scholar
  5. 5.
    Nesenenko, G.A.,Bibliograficheskii obzor, formulirovki teorem i algoritmy po teme “geometro-opticheskii” asimptoticheskii metod resheniya singulyarno vozmushchennykh zadach nelineinogo teploi massoperenosa v oblastyakh s podvizhnymi granitsarni (Geometric-Optic Method for Singularly Perturbed Problems of Nonlinear Heat and Mass Transport in Domains with Movable Boundary. Bibliographic Review, Statements of Theorems, and Algorithms), Moscow, 1995.Google Scholar
  6. 6.
    Kravchenko, V.F. and Nesenenko, G.A.,Differents. Uravn., 1997, vol. 33, no. 9, pp. 1174–1180.MathSciNetGoogle Scholar
  7. 7.
    Kravchenko, V.F. and Nesenenko, G.A.,Dokl. RAN, 1998, vol. 358, no. 3, pp. 315–318.MATHMathSciNetGoogle Scholar
  8. 8.
    Olver, F.,Asymptotics and Special Functions, New York: Academic, 1974. Translated under the titleAsimptotika i spetsial’nye funktsii, Moscow: Nauka, 1990.Google Scholar
  9. 9.
    Fedoryuk, M.V.,Metod perevala (Saddle-Point Method), Moscow, 1977.Google Scholar
  10. 10.
    Friedman, A.,Partial Differential Equation of Parabolic Type, Englewood-Cliffs, 1964. Translated under the titleUravneniya s chastnymi proizvodnymi parabolicheskogo tipa, Moscow: Mir, 1968.Google Scholar
  11. 11.
    Karslou, G. and Eger, D.,Teploprovodnost’ tverdykh tel (Heat Conduction in Solid Bodies), Moscow, 1964.Google Scholar
  12. 12.
    Tikhonov, A.N.,Izv. Akad. Nauk SSSR. Ser. Mat. i Estestv. Nauk, 1937, no. 3, pp. 461–479.Google Scholar
  13. 13.
    Matematicheskaya entsiklopediya (Mathematical Encyclopedia), vol. 1, Moscow, 1977.Google Scholar
  14. 14.
    Handelsmann, R.A. and Olmstead, W.E.,SIAM J. Appl. Math., 1972, vol. 22, no. 3, pp. 373–384.CrossRefMathSciNetGoogle Scholar
  15. 15.
    Keller, J.B. and Olmstead, W.E.,Quart. Appl. Math., 1971, vol. 29, no. 1, pp. 559–566.MathSciNetGoogle Scholar
  16. 16.
    Tao, L.N.,ZAMP, 1981, vol. 32, no. 2, pp. 144–155.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Babenko, Yu.L,Inzhenerno-Fiz. Zh., 1983, vol. 45, no. 4, pp. 633–635.Google Scholar
  18. 18.
    Nesenenko, G.A., inMatematicheskie metody issledovaniya slozhnykh sistem, protsessov i Struktur: Sbornik nauchnykh trudov (Mathematical Methods for the Investigation of Complicated Systems, Processes, and Structures: Collection of Scientific Works), Moscow, 1998, pp. 42–73.Google Scholar
  19. 19.
    Letavin, M.I. and Mishuris, G.S.,Differents. Uravn., 1991, vol. 27, no. 9, pp. 1596–1603.MathSciNetGoogle Scholar
  20. 20.
    Nesenenko, G.A.,Problemy gazodinamiki i teplomassoobmena v energeticheskikh ustanovkakh: Trudy XII shkoly-seminara molodykh uchenykh i spetsialistov pod rukovodstvom akademika RAN A.I. Leont’eva. Moskva, 25–28 maya 1999 (Problems of Gas Dynamics and Heat and Mass Exchange in PowerGeneration Installations: Proc. of XII Seminar of Young Scientists and Specialists under the Supervision of Academician A.I. Leont’ev. Moscow, May 25–28, 1999), Moscow, 1999, pp. 102–105.Google Scholar
  21. 21.
    Nesenenko, G.A. and Tyurin, Yu.N.,Mat. Sb., 1984, vol. 124, no. 3, pp. 320–334.MathSciNetGoogle Scholar
  22. 22.
    Nesenenko, G.A.,Zarubezhnaya Radioelektronika. Uspekhi Sovremennoi Radioelektroniki, 1999, no. 12, pp. 3–25.Google Scholar
  23. 23.
    Nesenenko, G.A.,Reshenie zadach teplovoi teorii zazhiganiya reagiruyushchikh kondensirovannykh sred “geometro-opticheskim” asimptoticheskim metodom (Solution of Problems of Heat Theory of Ignition of Reacting Condensed Media by the “Geometric-Optic” Asymptotic Method), Moscow, 1999, part 1.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2000

Authors and Affiliations

  • G. A. Nesenenko
    • 1
  1. 1.Moscow State Technical UniversityMoscowRussia

Personalised recommendations